An adaptive discretization for Tikhonov-Phillips regularization with a posteriori parameter selection

被引:8
|
作者
Maass, P [1 ]
Pereverzev, SV [1 ]
Ramlau, R [1 ]
Solodky, SG [1 ]
机构
[1] Univ Bremen, Fachbereich Math & Informat, D-28334 Bremen, Germany
关键词
D O I
10.1007/PL00005421
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to describe an efficient adaptive strategy for discretizing ill-posed linear operator equations of the first kind: we consider Tikhonov-Phillips regularization x(alpha)(delta) = (A*A+alphaI)(-1) A*y(delta) with a finite dimensional approximation A(n) instead of A. We propose a sparse matrix structure which still leads to optimal convergences rates but requires substantially less scalar products for computing A(n) compared with standard methods.
引用
收藏
页码:485 / 502
页数:18
相关论文
共 50 条
  • [21] Converse and saturation results on Tikhonov regularization together witha posteriori parameter choice
    Qinian Jin
    Science in China Series A: Mathematics, 1999, 42 : 1137 - 1146
  • [22] DISCRETIZATION ERROR ANALYSIS FOR TIKHONOV REGULARIZATION
    De Vito, Ernesto
    Rosasco, Lorenzo
    Caponnetto, Andrea
    ANALYSIS AND APPLICATIONS, 2006, 4 (01) : 81 - 99
  • [23] A priori strategy in discretization of the Tikhonov regularization
    Cheng, J
    Yamamoto, M
    Zou, J
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 1405 - 1412
  • [24] ON THE CHOICE OF THE TIKHONOV REGULARIZATION PARAMETER AND THE DISCRETIZATION LEVEL: A DISCREPANCY-BASED STRATEGY
    Albani, Vinicius
    De Cezaro, Adriano
    Zubelli, Jorge P.
    INVERSE PROBLEMS AND IMAGING, 2016, 10 (01) : 1 - 25
  • [25] Fast Adaptive Regularization for Perfusion Parameter Computation Tuning the Tikhonov Regularization Parameter to the SNR by Regression
    Manhart, Michael
    Maier, Andreas
    Hornegger, Joachim
    Doerfler, Arnd
    BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, : 311 - 316
  • [26] A REGULARIZATION PARAMETER FOR NONSMOOTH TIKHONOV REGULARIZATION
    Ito, Kazufumi
    Jin, Bangti
    Takeuchi, Tomoya
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (03): : 1415 - 1438
  • [27] Automatic parameter selection for Tikhonov regularization in ECT Inverse problem
    Pasadas, Dario J.
    Ribeiro, Artur L.
    Ramos, Helena G.
    Rocha, Tiago J.
    SENSORS AND ACTUATORS A-PHYSICAL, 2016, 246 : 73 - 80
  • [28] On an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems
    Jin, QN
    Hou, ZY
    NUMERISCHE MATHEMATIK, 1999, 83 (01) : 139 - 159
  • [29] Automatic balancing parameter selection for Tikhonov-TV regularization
    Ali Gholami
    Silvia Gazzola
    BIT Numerical Mathematics, 2022, 62 : 1873 - 1898
  • [30] Automatic balancing parameter selection for Tikhonov-TV regularization
    Gholami, Ali
    Gazzola, Silvia
    BIT NUMERICAL MATHEMATICS, 2022, 62 (04) : 1873 - 1898