An adaptive discretization for Tikhonov-Phillips regularization with a posteriori parameter selection

被引:8
|
作者
Maass, P [1 ]
Pereverzev, SV [1 ]
Ramlau, R [1 ]
Solodky, SG [1 ]
机构
[1] Univ Bremen, Fachbereich Math & Informat, D-28334 Bremen, Germany
关键词
D O I
10.1007/PL00005421
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to describe an efficient adaptive strategy for discretizing ill-posed linear operator equations of the first kind: we consider Tikhonov-Phillips regularization x(alpha)(delta) = (A*A+alphaI)(-1) A*y(delta) with a finite dimensional approximation A(n) instead of A. We propose a sparse matrix structure which still leads to optimal convergences rates but requires substantially less scalar products for computing A(n) compared with standard methods.
引用
收藏
页码:485 / 502
页数:18
相关论文
共 50 条
  • [41] A parameter choice method for Tikhonov regularization
    Wu, LM
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2003, 16 : 107 - 128
  • [42] Expanding the applicability of an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems
    Argyros, Ioannis K.
    Cho, Yeol Je
    George, Santhosh
    Xiao, Yi-bin
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2813 - 2826
  • [43] Expanding the applicability of an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems
    Ioannis K. Argyros
    Yeol Je Cho
    Santhosh George
    Yi-bin Xiao
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 2813 - 2826
  • [44] Multiscale Galerkin methods for the nonstationary iterated Tikhonov method with a modified posteriori parameter selection
    Luo, Xingjun
    Ouyang, Zhaofu
    Zeng, Chunmei
    Li, Fanchun
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2018, 26 (01): : 109 - 120
  • [45] Comparison of methods for parameter selection in Tikhonov regularization with application to inverse force determination
    Choi, Hyoung Gil
    Thite, Anand N.
    Thompson, David J.
    JOURNAL OF SOUND AND VIBRATION, 2007, 304 (3-5) : 894 - 917
  • [46] Electrocardiographic Imaging in Atrial Fibrillation: Selection of the Optimal Tikhonov-Regularization Parameter
    Molero, Ruben
    Fambuena, Carlos
    Climent, Andreu M.
    Guillem, Maria S.
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [47] Direct analytic model of the L-curve for Tikhonov regularization parameter selection
    Mc Carthy, PJ
    INVERSE PROBLEMS, 2003, 19 (03) : 643 - 663
  • [48] A Posteriori Fractional Tikhonov Regularization Method for the Problem of Analytic Continuation
    Xue, Xuemin
    Xiong, Xiangtuan
    MATHEMATICS, 2021, 9 (18)
  • [49] Parametric Study on an Integral-Type Nonlocal Elastoplasticity Model Regularized with Tikhonov-Phillips Method
    Wu, Shouxin
    Yang, Shuwei
    JOURNAL OF ENGINEERING MECHANICS, 2020, 146 (12)
  • [50] ADAPTIVE REGULARIZATION, LINEARIZATION, AND DISCRETIZATION AND A POSTERIORI ERROR CONTROL FOR THE TWO-PHASE STEFAN PROBLEM
    Di Pietro, Daniele A.
    Vohralik, Martin
    Yousef, Soleiman
    MATHEMATICS OF COMPUTATION, 2015, 84 (291) : 153 - 186