An adaptive discretization for Tikhonov-Phillips regularization with a posteriori parameter selection

被引:8
|
作者
Maass, P [1 ]
Pereverzev, SV [1 ]
Ramlau, R [1 ]
Solodky, SG [1 ]
机构
[1] Univ Bremen, Fachbereich Math & Informat, D-28334 Bremen, Germany
关键词
D O I
10.1007/PL00005421
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to describe an efficient adaptive strategy for discretizing ill-posed linear operator equations of the first kind: we consider Tikhonov-Phillips regularization x(alpha)(delta) = (A*A+alphaI)(-1) A*y(delta) with a finite dimensional approximation A(n) instead of A. We propose a sparse matrix structure which still leads to optimal convergences rates but requires substantially less scalar products for computing A(n) compared with standard methods.
引用
收藏
页码:485 / 502
页数:18
相关论文
共 50 条
  • [31] Tikhonov–Phillips regularization with operator dependent seminorms
    Thomas Kilian Huckle
    Matous Sedlacek
    Numerical Algorithms, 2012, 60 : 339 - 353
  • [32] On an a posteriori parameter choice strategy for tikhonov regularization of nonlinear ill-posed problems
    Jin Q.-N.
    Hou Z.-Y.
    Numerische Mathematik, 1999, 83 (1) : 139 - 159
  • [33] Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems
    Kaltenbacher, Barbara
    Kirchner, Alana
    Vexler, Boris
    INVERSE PROBLEMS, 2011, 27 (12)
  • [35] The Spectral Characteristic Wavelength Selection and Parameter Optimization Based on Tikhonov Regularization
    Zhao An-xin
    Tang Xiao-jun
    Zhang Zhong-hua
    Liu Jun-hua
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34 (07) : 1836 - 1839
  • [36] OPTIMAL A POSTERIORI PARAMETER CHOICE FOR TIKHONOV REGULARIZATION FOR SOLVING NONLINEAR III-POSED PROBLEMS
    SCHERZER, O
    ENGL, HW
    KUNISCH, K
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (06) : 1796 - 1838
  • [37] An adaptive Tikhonov regularization parameter choice method for electrical resistance tomography
    Xu, Yanbin
    Pei, Yang
    Dong, Feng
    FLOW MEASUREMENT AND INSTRUMENTATION, 2016, 50 : 1 - 12
  • [38] Parameter selection methods for axisymmetric flame tomography through Tikhonov regularization
    Akesson, Emil O.
    Daun, Kyle J.
    APPLIED OPTICS, 2008, 47 (03) : 407 - 416
  • [39] Modified Phillips-Tikhonov regularization for plasma tomography
    Lee, Seung Hun
    Kim, Junghee
    Lee, J. H.
    Choe, Wonho
    CURRENT APPLIED PHYSICS, 2010, 10 (03) : 893 - 899
  • [40] MULTI-PARAMETER TIKHONOV REGULARIZATION
    Ito, Kazufumi
    Jin, Bangti
    Takeuchi, Tomoya
    METHODS AND APPLICATIONS OF ANALYSIS, 2011, 18 (01) : 31 - 46