The aim of this paper is to describe an efficient adaptive strategy for discretizing ill-posed linear operator equations of the first kind: we consider Tikhonov-Phillips regularization x(alpha)(delta) = (A*A+alphaI)(-1) A*y(delta) with a finite dimensional approximation A(n) instead of A. We propose a sparse matrix structure which still leads to optimal convergences rates but requires substantially less scalar products for computing A(n) compared with standard methods.
机构:
Xian Univ Sci & Technol, Xian 710054, Peoples R China
Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R ChinaXian Univ Sci & Technol, Xian 710054, Peoples R China
Zhao An-xin
Tang Xiao-jun
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R ChinaXian Univ Sci & Technol, Xian 710054, Peoples R China
Tang Xiao-jun
Zhang Zhong-hua
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
Natl Inst Metrol, Beijing 100013, Peoples R ChinaXian Univ Sci & Technol, Xian 710054, Peoples R China
Zhang Zhong-hua
Liu Jun-hua
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R ChinaXian Univ Sci & Technol, Xian 710054, Peoples R China
机构:
North Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
North Carolina State Univ, Dept Math, Raleigh, NC 27695 USANorth Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
Ito, Kazufumi
Jin, Bangti
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
Texas A&M Univ, Inst Appl Math & Sci Comp, College Stn, TX 77843 USANorth Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
Jin, Bangti
Takeuchi, Tomoya
论文数: 0引用数: 0
h-index: 0
机构:
North Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USANorth Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA