Automatic balancing parameter selection for Tikhonov-TV regularization

被引:2
|
作者
Gholami, Ali [1 ,2 ]
Gazzola, Silvia [3 ]
机构
[1] Univ Tehran, Inst Geophys, Tehran, Iran
[2] Polish Acad Sci, Inst Geophys, Warsaw, Poland
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
Tikhonov-TV regularization; ADMM; Regularization parameter selection; Inverse problems;
D O I
10.1007/s10543-022-00934-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper considers large-scale linear ill-posed inverse problems whose solutions can be represented as sums of smooth and piecewise constant components. To solve such problems we consider regularizers consisting of two terms that must be balanced. Namely, a Tikhonov term guarantees the smoothness of the smooth solution component, while a total-variation (TV) regularizer promotes blockiness of the non-smooth solution component. A scalar parameter allows to balance between these two terms and, hence, to appropriately separate and regularize the smooth and non-smooth components of the solution. This paper proposes an efficient algorithm to solve this regularization problem by the alternating direction method of multipliers (ADMM). Furthermore, a novel algorithm for automatic choice of the balancing parameter is introduced, using robust statistics. The proposed approach is supported by some theoretical analysis, and numerical experiments concerned with different inverse problems are presented to validate the choice of the balancing parameter.
引用
收藏
页码:1873 / 1898
页数:26
相关论文
共 50 条
  • [1] Automatic balancing parameter selection for Tikhonov-TV regularization
    Ali Gholami
    Silvia Gazzola
    BIT Numerical Mathematics, 2022, 62 : 1873 - 1898
  • [2] A new Tikhonov-TV regularization for optical flow computation
    Kalmoun, El Mostafa
    ELEVENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2019), 2020, 11373
  • [3] Automatic parameter selection for Tikhonov regularization in ECT Inverse problem
    Pasadas, Dario J.
    Ribeiro, Artur L.
    Ramos, Helena G.
    Rocha, Tiago J.
    SENSORS AND ACTUATORS A-PHYSICAL, 2016, 246 : 73 - 80
  • [4] Inversion of seismic arrival times with erratic noise using robust Tikhonov-TV regularization
    Alrajawi, M.
    Siahkoohi, H. R.
    Gholami, A.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2017, 211 (02) : 831 - 842
  • [5] Adaptive parameter selection for Tikhonov regularization in Bioluminescence tomography
    Yu, Jingjing
    Liu, Fang
    He, Xiaowei
    Jiao, Licheng
    2010 3RD INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2010), VOLS 1-7, 2010, : 86 - 90
  • [6] A REGULARIZATION PARAMETER FOR NONSMOOTH TIKHONOV REGULARIZATION
    Ito, Kazufumi
    Jin, Bangti
    Takeuchi, Tomoya
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (03): : 1415 - 1438
  • [7] Image super resolution via multi-regularization combining hybrid Tikhonov-TV prior and deep denoiser prior
    Zhang, Jiahao
    Zhao, Shengrong
    Liang, Hu
    Wen, Changchun
    Liang, Chen
    2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 829 - 835
  • [8] The Spectral Characteristic Wavelength Selection and Parameter Optimization Based on Tikhonov Regularization
    Zhao An-xin
    Tang Xiao-jun
    Zhang Zhong-hua
    Liu Jun-hua
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34 (07) : 1836 - 1839
  • [9] An adaptive discretization for Tikhonov-Phillips regularization with a posteriori parameter selection
    Maass, P
    Pereverzev, SV
    Ramlau, R
    Solodky, SG
    NUMERISCHE MATHEMATIK, 2001, 87 (03) : 485 - 502
  • [10] An adaptive discretization for Tikhonov-Phillips regularization with a posteriori parameter selection
    Peter Maaß
    Sergei V. Pereverzev
    Ronny Ramlau
    Sergei G. Solodky
    Numerische Mathematik, 2001, 87 : 485 - 502