Automatic balancing parameter selection for Tikhonov-TV regularization

被引:2
|
作者
Gholami, Ali [1 ,2 ]
Gazzola, Silvia [3 ]
机构
[1] Univ Tehran, Inst Geophys, Tehran, Iran
[2] Polish Acad Sci, Inst Geophys, Warsaw, Poland
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
Tikhonov-TV regularization; ADMM; Regularization parameter selection; Inverse problems;
D O I
10.1007/s10543-022-00934-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper considers large-scale linear ill-posed inverse problems whose solutions can be represented as sums of smooth and piecewise constant components. To solve such problems we consider regularizers consisting of two terms that must be balanced. Namely, a Tikhonov term guarantees the smoothness of the smooth solution component, while a total-variation (TV) regularizer promotes blockiness of the non-smooth solution component. A scalar parameter allows to balance between these two terms and, hence, to appropriately separate and regularize the smooth and non-smooth components of the solution. This paper proposes an efficient algorithm to solve this regularization problem by the alternating direction method of multipliers (ADMM). Furthermore, a novel algorithm for automatic choice of the balancing parameter is introduced, using robust statistics. The proposed approach is supported by some theoretical analysis, and numerical experiments concerned with different inverse problems are presented to validate the choice of the balancing parameter.
引用
收藏
页码:1873 / 1898
页数:26
相关论文
共 50 条
  • [21] Research on Tikhonov regularization parameter selection in dynamic light scattering measurement of flowing particles
    Liu, Zhenming
    Zhang, Xiangke
    Wang, Yajing
    Shen, Jin
    Yuan, Xi
    Mu, Tongtong
    Liu, Wei
    Li, Changzhi
    Wang, Zongzheng
    JOURNAL OF OPTICS-INDIA, 2022, 51 (04): : 1038 - 1051
  • [22] Research on Tikhonov regularization parameter selection in dynamic light scattering measurement of flowing particles
    Zhenming Liu
    Xiangke Zhang
    Yajing Wang
    Jin Shen
    Xi Yuan
    Tongtong Mu
    Wei Liu
    Changzhi Li
    Zongzheng Wang
    Journal of Optics, 2022, 51 : 1038 - 1051
  • [23] Sobolev error estimates and a priori parameter selection for semi-discrete Tikhonov regularization
    Krebs, J.
    Louis, A. K.
    Wendland, H.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2009, 17 (09): : 845 - 869
  • [24] On pseudooptimal parameter choice in the Tikhonov regularization method
    Leonov, A.S.
    Vestnik Moskovskogo Universiteta. Ser. 15 Vychislitel'naya Matematika i Kibernetika, 1995, (01): : 40 - 44
  • [25] Automatic selection of regularization parameter in inverse heat conduction problems
    Pacheco, C. C.
    Lacerda, C. R.
    Colaco, M. J.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 139
  • [26] Higher-order regularization based image restoration with automatic regularization parameter selection
    Kang, Myeongmin
    Jung, Miyoun
    Kang, Myungjoo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (01) : 58 - 80
  • [27] Multi-parameter Tikhonov regularization — An augmented approach
    Kazufumi Ito
    Bangti Jin
    Tomoya Takeuchi
    Chinese Annals of Mathematics, Series B, 2014, 35 : 383 - 398
  • [28] Fast Adaptive Regularization for Perfusion Parameter Computation Tuning the Tikhonov Regularization Parameter to the SNR by Regression
    Manhart, Michael
    Maier, Andreas
    Hornegger, Joachim
    Doerfler, Arnd
    BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, : 311 - 316
  • [29] ON THE CONVERGENCE OF A HEURISTIC PARAMETER CHOICE RULE FOR TIKHONOV REGULARIZATION
    Gockenbach, Mark S.
    Gorgin, Elaheh
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (04): : A2694 - A2719
  • [30] Multi-parameter Tikhonov Regularization—An Augmented Approach
    Kazufumi ITO
    Bangti JIN
    Tomoya TAKEUCHI
    ChineseAnnalsofMathematics(SeriesB), 2014, 35 (03) : 383 - 398