Automatic balancing parameter selection for Tikhonov-TV regularization

被引:2
|
作者
Gholami, Ali [1 ,2 ]
Gazzola, Silvia [3 ]
机构
[1] Univ Tehran, Inst Geophys, Tehran, Iran
[2] Polish Acad Sci, Inst Geophys, Warsaw, Poland
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
Tikhonov-TV regularization; ADMM; Regularization parameter selection; Inverse problems;
D O I
10.1007/s10543-022-00934-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper considers large-scale linear ill-posed inverse problems whose solutions can be represented as sums of smooth and piecewise constant components. To solve such problems we consider regularizers consisting of two terms that must be balanced. Namely, a Tikhonov term guarantees the smoothness of the smooth solution component, while a total-variation (TV) regularizer promotes blockiness of the non-smooth solution component. A scalar parameter allows to balance between these two terms and, hence, to appropriately separate and regularize the smooth and non-smooth components of the solution. This paper proposes an efficient algorithm to solve this regularization problem by the alternating direction method of multipliers (ADMM). Furthermore, a novel algorithm for automatic choice of the balancing parameter is introduced, using robust statistics. The proposed approach is supported by some theoretical analysis, and numerical experiments concerned with different inverse problems are presented to validate the choice of the balancing parameter.
引用
收藏
页码:1873 / 1898
页数:26
相关论文
共 50 条
  • [11] Parameter selection methods for axisymmetric flame tomography through Tikhonov regularization
    Akesson, Emil O.
    Daun, Kyle J.
    APPLIED OPTICS, 2008, 47 (03) : 407 - 416
  • [12] Constrained Regularization by Denoising With Automatic Parameter Selection
    Cascarano, Pasquale
    Benfenati, Alessandro
    Kamilov, Ulugbek S.
    Xu, Xiaojian
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 556 - 560
  • [13] MULTI-PARAMETER TIKHONOV REGULARIZATION
    Ito, Kazufumi
    Jin, Bangti
    Takeuchi, Tomoya
    METHODS AND APPLICATIONS OF ANALYSIS, 2011, 18 (01) : 31 - 46
  • [14] A parameter choice method for Tikhonov regularization
    Wu, LM
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2003, 16 : 107 - 128
  • [15] Comparison of methods for parameter selection in Tikhonov regularization with application to inverse force determination
    Choi, Hyoung Gil
    Thite, Anand N.
    Thompson, David J.
    JOURNAL OF SOUND AND VIBRATION, 2007, 304 (3-5) : 894 - 917
  • [16] Electrocardiographic Imaging in Atrial Fibrillation: Selection of the Optimal Tikhonov-Regularization Parameter
    Molero, Ruben
    Fambuena, Carlos
    Climent, Andreu M.
    Guillem, Maria S.
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [17] Direct analytic model of the L-curve for Tikhonov regularization parameter selection
    Mc Carthy, PJ
    INVERSE PROBLEMS, 2003, 19 (03) : 643 - 663
  • [18] Nonlinear Tikhonov regularization in Hilbert scales with balancing principle tuning parameter in statistical inverse problems
    Pricop-Jeckstadt, M.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2019, 27 (02) : 205 - 236
  • [19] Parameter selections for Tikhonov regularization image restoration
    Zhang, Bin
    Jin, Fei
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 1419 - 1423
  • [20] Embedded techniques for choosing the parameter in Tikhonov regularization
    Gazzola, S.
    Novati, P.
    Russo, M. R.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (06) : 796 - 812