An adaptive discretization for Tikhonov-Phillips regularization with a posteriori parameter selection

被引:8
|
作者
Maass, P [1 ]
Pereverzev, SV [1 ]
Ramlau, R [1 ]
Solodky, SG [1 ]
机构
[1] Univ Bremen, Fachbereich Math & Informat, D-28334 Bremen, Germany
关键词
D O I
10.1007/PL00005421
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to describe an efficient adaptive strategy for discretizing ill-posed linear operator equations of the first kind: we consider Tikhonov-Phillips regularization x(alpha)(delta) = (A*A+alphaI)(-1) A*y(delta) with a finite dimensional approximation A(n) instead of A. We propose a sparse matrix structure which still leads to optimal convergences rates but requires substantially less scalar products for computing A(n) compared with standard methods.
引用
收藏
页码:485 / 502
页数:18
相关论文
共 50 条