ANOVA FOR LONGITUDINAL DATA WITH MISSING VALUES

被引:9
|
作者
Chen, Song Xi [1 ,2 ]
Zhong, Ping-Shou [1 ]
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[2] Peking Univ, Ctr Stat Sci, Guanghua Sch Management, Beijing 100871, Peoples R China
来源
ANNALS OF STATISTICS | 2010年 / 38卷 / 06期
关键词
Analysis of variance; empirical likelihood; kernel smoothing; missing at random; semiparametric model; treatment effects; SEMIPARAMETRIC REGRESSION-ANALYSIS; VARYING-COEFFICIENT MODEL; EMPIRICAL LIKELIHOOD; BOOTSTRAP; TESTS;
D O I
10.1214/10-AOS824
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We carry out ANOVA comparisons of multiple treatments for longitudinal studies with missing values. The treatment effects are modeled semiparametrically via a partially linear regression which is flexible in quantifying the time effects of treatments. The empirical likelihood is employed to formulate model-robust nonparametric ANOVA tests for treatment effects with respect to covariates, the nonparametric time-effect functions and interactions between covariates and time. The proposed tests can be readily modified for a variety of data and model combinations, that encompasses parametric, semiparametric and nonparametric regression models; cross-sectional and longitudinal data, and with or without missing values.
引用
收藏
页码:3630 / 3659
页数:30
相关论文
共 50 条
  • [1] Analyzing Longitudinal Data With Missing Values
    Enders, Craig K.
    [J]. REHABILITATION PSYCHOLOGY, 2011, 56 (04) : 267 - 288
  • [2] REGRESSION IMPUTATION OF MISSING VALUES IN LONGITUDINAL DATA SETS
    SCHNEIDERMAN, ED
    KOWALSKI, CJ
    WILLIS, SM
    [J]. INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING, 1993, 32 (02): : 121 - 133
  • [3] Transitional modeling of experimental longitudinal data with missing values
    de Rooij, Mark
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2018, 12 (01) : 107 - 130
  • [4] FITTING LONGITUDINAL DATA WITH MISSING VALUES IN THE RESPONSE AND COVARIATES
    Darwish, Nesma M.
    Gad, Ahmed M.
    Mohamed, Ramadan H.
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2020, 64 (02) : 127 - 142
  • [5] Transitional modeling of experimental longitudinal data with missing values
    Mark de Rooij
    [J]. Advances in Data Analysis and Classification, 2018, 12 : 107 - 130
  • [6] LEARNING DISEASE PROGRESSION MODELS WITH LONGITUDINAL DATA AND MISSING VALUES
    Couronne, Raphael
    Vidailhet, Marie
    Corvol, Jean Christophe
    Lehericy, Stephane
    Durrleman, Stanley
    [J]. 2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1033 - 1037
  • [7] Visual Analysis of Missing Values in Longitudinal Cohort Study Data
    Alemzadeh, S.
    Niemann, U.
    Ittermann, T.
    Voelzke, H.
    Schneider, D.
    Spiliopoulou, M.
    Buehler, K.
    Preim, B.
    [J]. COMPUTER GRAPHICS FORUM, 2020, 39 (01) : 63 - 75
  • [8] Handling Missing Values in Longitudinal Panel Data With Multiple Imputation
    Young, Rebekah
    Johnson, David R.
    [J]. JOURNAL OF MARRIAGE AND FAMILY, 2015, 77 (01) : 277 - 294
  • [9] Analysis of longitudinal data from animals with missing values using SPSS
    Duricki, Denise A.
    Soleman, Sara
    Moon, Lawrence D. F.
    [J]. NATURE PROTOCOLS, 2016, 11 (06) : 1112 - 1129
  • [10] Analysis of Longitudinal Outcome Data with Missing Values in Total Knee Arthroplasty
    Kang, Yeon Gwi
    Lee, Jang Taek
    Kang, Jong Yeal
    Kim, Ga Hye
    Kim, Tae Kyun
    [J]. JOURNAL OF ARTHROPLASTY, 2016, 31 (01): : 81 - 86