ANOVA FOR LONGITUDINAL DATA WITH MISSING VALUES

被引:9
|
作者
Chen, Song Xi [1 ,2 ]
Zhong, Ping-Shou [1 ]
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[2] Peking Univ, Ctr Stat Sci, Guanghua Sch Management, Beijing 100871, Peoples R China
来源
ANNALS OF STATISTICS | 2010年 / 38卷 / 06期
关键词
Analysis of variance; empirical likelihood; kernel smoothing; missing at random; semiparametric model; treatment effects; SEMIPARAMETRIC REGRESSION-ANALYSIS; VARYING-COEFFICIENT MODEL; EMPIRICAL LIKELIHOOD; BOOTSTRAP; TESTS;
D O I
10.1214/10-AOS824
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We carry out ANOVA comparisons of multiple treatments for longitudinal studies with missing values. The treatment effects are modeled semiparametrically via a partially linear regression which is flexible in quantifying the time effects of treatments. The empirical likelihood is employed to formulate model-robust nonparametric ANOVA tests for treatment effects with respect to covariates, the nonparametric time-effect functions and interactions between covariates and time. The proposed tests can be readily modified for a variety of data and model combinations, that encompasses parametric, semiparametric and nonparametric regression models; cross-sectional and longitudinal data, and with or without missing values.
引用
收藏
页码:3630 / 3659
页数:30
相关论文
共 50 条
  • [1] Analyzing Longitudinal Data With Missing Values
    Enders, Craig K.
    REHABILITATION PSYCHOLOGY, 2011, 56 (04) : 267 - 288
  • [2] REGRESSION IMPUTATION OF MISSING VALUES IN LONGITUDINAL DATA SETS
    SCHNEIDERMAN, ED
    KOWALSKI, CJ
    WILLIS, SM
    INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING, 1993, 32 (02): : 121 - 133
  • [3] Transitional modeling of experimental longitudinal data with missing values
    de Rooij, Mark
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2018, 12 (01) : 107 - 130
  • [4] FITTING LONGITUDINAL DATA WITH MISSING VALUES IN THE RESPONSE AND COVARIATES
    Darwish, Nesma M.
    Gad, Ahmed M.
    Mohamed, Ramadan H.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2020, 64 (02) : 127 - 142
  • [5] Transitional modeling of experimental longitudinal data with missing values
    Mark de Rooij
    Advances in Data Analysis and Classification, 2018, 12 : 107 - 130
  • [6] Visual Analysis of Missing Values in Longitudinal Cohort Study Data
    Alemzadeh, S.
    Niemann, U.
    Ittermann, T.
    Voelzke, H.
    Schneider, D.
    Spiliopoulou, M.
    Buehler, K.
    Preim, B.
    COMPUTER GRAPHICS FORUM, 2020, 39 (01) : 63 - 75
  • [7] LEARNING DISEASE PROGRESSION MODELS WITH LONGITUDINAL DATA AND MISSING VALUES
    Couronne, Raphael
    Vidailhet, Marie
    Corvol, Jean Christophe
    Lehericy, Stephane
    Durrleman, Stanley
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1033 - 1037
  • [8] Handling Missing Values in Longitudinal Panel Data With Multiple Imputation
    Young, Rebekah
    Johnson, David R.
    JOURNAL OF MARRIAGE AND FAMILY, 2015, 77 (01) : 277 - 294
  • [9] Analysis of Longitudinal Outcome Data with Missing Values in Total Knee Arthroplasty
    Kang, Yeon Gwi
    Lee, Jang Taek
    Kang, Jong Yeal
    Kim, Ga Hye
    Kim, Tae Kyun
    JOURNAL OF ARTHROPLASTY, 2016, 31 (01): : 81 - 86
  • [10] Analysis of longitudinal data from animals with missing values using SPSS
    Duricki, Denise A.
    Soleman, Sara
    Moon, Lawrence D. F.
    NATURE PROTOCOLS, 2016, 11 (06) : 1112 - 1129