ANOVA FOR LONGITUDINAL DATA WITH MISSING VALUES

被引:9
|
作者
Chen, Song Xi [1 ,2 ]
Zhong, Ping-Shou [1 ]
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[2] Peking Univ, Ctr Stat Sci, Guanghua Sch Management, Beijing 100871, Peoples R China
来源
ANNALS OF STATISTICS | 2010年 / 38卷 / 06期
关键词
Analysis of variance; empirical likelihood; kernel smoothing; missing at random; semiparametric model; treatment effects; SEMIPARAMETRIC REGRESSION-ANALYSIS; VARYING-COEFFICIENT MODEL; EMPIRICAL LIKELIHOOD; BOOTSTRAP; TESTS;
D O I
10.1214/10-AOS824
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We carry out ANOVA comparisons of multiple treatments for longitudinal studies with missing values. The treatment effects are modeled semiparametrically via a partially linear regression which is flexible in quantifying the time effects of treatments. The empirical likelihood is employed to formulate model-robust nonparametric ANOVA tests for treatment effects with respect to covariates, the nonparametric time-effect functions and interactions between covariates and time. The proposed tests can be readily modified for a variety of data and model combinations, that encompasses parametric, semiparametric and nonparametric regression models; cross-sectional and longitudinal data, and with or without missing values.
引用
收藏
页码:3630 / 3659
页数:30
相关论文
共 50 条
  • [41] Multiple Imputation based Clustering Validation (MIV) for Big Longitudinal Trial Data with Missing Values in eHealth
    Zhaoyang Zhang
    Hua Fang
    Honggang Wang
    Journal of Medical Systems, 2016, 40
  • [42] GRU-DF: A Temporal Model with Dynamic Imputation for Missing Target Values in Longitudinal Patient Data
    Zhao, Yijun
    Berretta, Matias
    Wang, Tong
    Chitnis, Tanuja
    2020 8TH IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2020), 2020, : 101 - 107
  • [43] Robust inference for longitudinal data analysis with non-ignorable and non-monotonic missing values
    Tseng, Chi-hong
    Elashoff, Robert
    Li, Ning
    Li, Gang
    STATISTICS AND ITS INTERFACE, 2012, 5 (04) : 479 - 490
  • [44] Handling Missing Data in the Modeling of Intensive Longitudinal Data
    Ji, Linying
    Chow, Sy-Miin
    Schermerhom, Alice C.
    Jacobson, Nicholas C.
    Cummings, E. Mark
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (05) : 715 - 736
  • [45] Multiple Imputation based Clustering Validation (MIV) for Big Longitudinal Trial Data with Missing Values in eHealth
    Zhang, Zhaoyang
    Fang, Hua
    Wang, Honggang
    JOURNAL OF MEDICAL SYSTEMS, 2016, 40 (06)
  • [46] MISSING-CELL ESTIMATES IN ANOVA
    LITTLE, RJA
    AMERICAN STATISTICIAN, 1989, 43 (02): : 131 - 131
  • [47] Imputation of continuous missing values in profile data
    Yang, Luo
    Wang, Kaibo
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2022, 38 (07) : 3644 - 3662
  • [48] Imputing missing values for genetic interaction data
    Wang, Yishu
    Wang, Lin
    Yang, Dejie
    Deng, Minghua
    METHODS, 2014, 67 (03) : 269 - 277
  • [49] THE FITTING OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSING VALUES
    HARTLEY, HO
    BIOMETRIKA, 1951, 38 (3-4) : 410 - 413
  • [50] ESTIMATION OF MISSING VALUES FOR THE ANALYSIS OF INCOMPLETE DATA
    WILKINSON, GN
    BIOMETRICS, 1958, 14 (02) : 257 - 286