ANOVA FOR LONGITUDINAL DATA WITH MISSING VALUES

被引:9
|
作者
Chen, Song Xi [1 ,2 ]
Zhong, Ping-Shou [1 ]
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[2] Peking Univ, Ctr Stat Sci, Guanghua Sch Management, Beijing 100871, Peoples R China
来源
ANNALS OF STATISTICS | 2010年 / 38卷 / 06期
关键词
Analysis of variance; empirical likelihood; kernel smoothing; missing at random; semiparametric model; treatment effects; SEMIPARAMETRIC REGRESSION-ANALYSIS; VARYING-COEFFICIENT MODEL; EMPIRICAL LIKELIHOOD; BOOTSTRAP; TESTS;
D O I
10.1214/10-AOS824
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We carry out ANOVA comparisons of multiple treatments for longitudinal studies with missing values. The treatment effects are modeled semiparametrically via a partially linear regression which is flexible in quantifying the time effects of treatments. The empirical likelihood is employed to formulate model-robust nonparametric ANOVA tests for treatment effects with respect to covariates, the nonparametric time-effect functions and interactions between covariates and time. The proposed tests can be readily modified for a variety of data and model combinations, that encompasses parametric, semiparametric and nonparametric regression models; cross-sectional and longitudinal data, and with or without missing values.
引用
收藏
页码:3630 / 3659
页数:30
相关论文
共 50 条
  • [21] Bayesian Test of Homogeneity in Transition Model for Longitudinal Ordinal Response Data with Missing Values
    S. Noorian
    M. Ganjali
    [J]. Journal of Statistical Theory and Applications, 2013, 12 (2): : 191 - 199
  • [22] Analysis of longitudinal data with non-ignorable non-monotone missing values
    Troxel, AB
    Harrington, DP
    Lipsitz, SR
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1998, 47 : 425 - 438
  • [23] EMPIRICAL LIKELIHOOD APPROACH FOR LONGITUDINAL DATA WITH MISSING VALUES AND TIME-DEPENDENT COVARIATES
    Yan Zhang
    Weiping Zhang
    Xiao Guo
    [J]. Annals of Applied Mathematics, 2016, 32 (02) : 200 - 220
  • [24] Imputation-based strategies for clinical trial longitudinal data with nonignorable missing values
    Yang, Xiaowei
    Li, Jinhui
    Shoptaw, Steven
    [J]. STATISTICS IN MEDICINE, 2008, 27 (15) : 2826 - 2849
  • [25] ANALYSIS OF DATA WITH MISSING VALUES - COMMENTARY
    LITTLE, RJA
    [J]. STATISTICS IN MEDICINE, 1988, 7 (1-2) : 347 - 355
  • [26] Handling missing values in trait data
    Johnson, Thomas F.
    Isaac, Nick J. B.
    Paviolo, Agustin
    Gonzalez-Suarez, Manuela
    [J]. GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2021, 30 (01): : 51 - 62
  • [27] ANALYSIS OF DATA WITH MISSING VALUES - DISCUSSION
    HELMS, RW
    LAIRD, NM
    LEBOWITZ, MD
    MANTEL, N
    LOUIS, TA
    WU, M
    [J]. STATISTICS IN MEDICINE, 1988, 7 (1-2) : 357 - 360
  • [28] Missing values in monotone data sets
    Popova, Viara
    [J]. ISDA 2006: Sixth International Conference on Intelligent Systems Design and Applications, Vol 1, 2006, : 627 - 632
  • [29] SPECTRA FROM DATA WITH MISSING VALUES
    HARRIS, RW
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1987, 1 (01) : 97 - 104
  • [30] Analysing censored longitudinal data with non-ignorable missing values: depression in older age
    Falcaro, Milena
    Pendleton, Neil
    Pickles, Andrew
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2013, 176 (02) : 415 - 430