ANOVA FOR LONGITUDINAL DATA WITH MISSING VALUES

被引:9
|
作者
Chen, Song Xi [1 ,2 ]
Zhong, Ping-Shou [1 ]
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[2] Peking Univ, Ctr Stat Sci, Guanghua Sch Management, Beijing 100871, Peoples R China
来源
ANNALS OF STATISTICS | 2010年 / 38卷 / 06期
关键词
Analysis of variance; empirical likelihood; kernel smoothing; missing at random; semiparametric model; treatment effects; SEMIPARAMETRIC REGRESSION-ANALYSIS; VARYING-COEFFICIENT MODEL; EMPIRICAL LIKELIHOOD; BOOTSTRAP; TESTS;
D O I
10.1214/10-AOS824
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We carry out ANOVA comparisons of multiple treatments for longitudinal studies with missing values. The treatment effects are modeled semiparametrically via a partially linear regression which is flexible in quantifying the time effects of treatments. The empirical likelihood is employed to formulate model-robust nonparametric ANOVA tests for treatment effects with respect to covariates, the nonparametric time-effect functions and interactions between covariates and time. The proposed tests can be readily modified for a variety of data and model combinations, that encompasses parametric, semiparametric and nonparametric regression models; cross-sectional and longitudinal data, and with or without missing values.
引用
收藏
页码:3630 / 3659
页数:30
相关论文
共 50 条
  • [31] Dealing with missing values in proteomics data
    Kong, Weijia
    Hui, Harvard Wai Hann
    Peng, Hui
    Bin Goh, Wilson Wen
    PROTEOMICS, 2022, 22 (23-24)
  • [32] Dealing with Missing Values in Microarray Data
    Mohammadi, Azadeh
    Saraee, Mohammad Hossein
    2008 INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES, PROCEEDINGS, 2008, : 258 - 263
  • [33] Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values
    Wang, Wan-Lun
    TEST, 2019, 28 (01) : 196 - 222
  • [34] Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values
    Wan-Lun Wang
    TEST, 2019, 28 : 196 - 222
  • [35] Missing values in longitudinal dietary data: A multiple imputation approach based on a fully conditional specification
    Nevalainen, Jaakko
    Kenward, Michael G.
    Virtanen, Suvi A.
    STATISTICS IN MEDICINE, 2009, 28 (29) : 3657 - 3669
  • [36] Handling Missing Values in Interrupted Time Series Analysis of Longitudinal Individual-Level Data
    Bazo-Alvarez, Juan Carlos
    Morris, Tim P.
    Tra My Pham
    Carpenter, James R.
    Petersen, Irene
    CLINICAL EPIDEMIOLOGY, 2020, 12 : 1045 - 1057
  • [38] MISSING DATA IN LONGITUDINAL-STUDIES
    LAIRD, NM
    STATISTICS IN MEDICINE, 1988, 7 (1-2) : 305 - 315
  • [39] A test of missing completely at random for longitudinal data with missing observations
    Park, T
    Lee, SY
    STATISTICS IN MEDICINE, 1997, 16 (16) : 1859 - 1871
  • [40] Considerations for missing data, outliers and transformations in permutation testing for ANOVA with multivariate responses
    Polushkina-Merchanskaya, Oliver
    Armstrong, Michael D. Sorochan
    Gomez-Llorente, Carolina
    Ferrer, Patricia
    Fernandez-Gonzalez, Sergi
    Perez-Cruz, Miriam
    Gomez-Roig, Maria Dolores
    Camacho, Jose
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2025, 258