Analysis of longitudinal data from animals with missing values using SPSS

被引:75
|
作者
Duricki, Denise A. [1 ,2 ]
Soleman, Sara [1 ]
Moon, Lawrence D. F. [1 ,2 ]
机构
[1] Kings Coll London, Wolfson Ctr Age Related Dis, London, England
[2] Kings Coll London, Ctr Integrat Biol, London, England
基金
英国医学研究理事会; 欧洲研究理事会; 英国生物技术与生命科学研究理事会;
关键词
D O I
10.1038/nprot.2016.048
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Testing of therapies for disease or injury often involves the analysis of longitudinal data from animals. Modern analytical methods have advantages over conventional methods (particularly when some data are missing), yet they are not used widely by preclinical researchers. Here we provide an easy-to-use protocol for the analysis of longitudinal data from animals, and we present a click-by-click guide for performing suitable analyses using the statistical package IBM SPSS Statistics software (SPSS). We guide readers through the analysis of a real-life data set obtained when testing a therapy for brain injury (stroke) in elderly rats. If a few data points are missing, as in this example data set (for example, because of animal dropout), repeated-measures analysis of covariance may fait to detect a treatment effect. An alternative analysis method, such as the use of linear models (with various covariance structures), and analysis using restricted maximum likelihood estimation (to include all available data) can be used to better detect treatment effects. This protocol takes 2 h to carry out.
引用
收藏
页码:1112 / 1129
页数:18
相关论文
共 50 条
  • [1] Analysis of longitudinal data from animals with missing values using SPSS
    Denise A Duricki
    Sara Soleman
    Lawrence D F Moon
    [J]. Nature Protocols, 2016, 11 : 1112 - 1129
  • [2] Application of Pattern Mixture Models to Address Missing Data in Longitudinal Data Analysis Using SPSS
    Son, Heesook
    Friedmann, Erika
    Thomas, Sue A.
    [J]. NURSING RESEARCH, 2012, 61 (03) : 195 - 203
  • [3] Analysis of longitudinal data with intermittent missing values using the stochastic EM algorithm
    Gad, Ahmed M.
    Ahmed, Abeer S.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (10) : 2702 - 2714
  • [4] Analyzing Longitudinal Data With Missing Values
    Enders, Craig K.
    [J]. REHABILITATION PSYCHOLOGY, 2011, 56 (04) : 267 - 288
  • [5] ANOVA FOR LONGITUDINAL DATA WITH MISSING VALUES
    Chen, Song Xi
    Zhong, Ping-Shou
    [J]. ANNALS OF STATISTICS, 2010, 38 (06): : 3630 - 3659
  • [6] Visual Analysis of Missing Values in Longitudinal Cohort Study Data
    Alemzadeh, S.
    Niemann, U.
    Ittermann, T.
    Voelzke, H.
    Schneider, D.
    Spiliopoulou, M.
    Buehler, K.
    Preim, B.
    [J]. COMPUTER GRAPHICS FORUM, 2020, 39 (01) : 63 - 75
  • [7] Analysis of Longitudinal Outcome Data with Missing Values in Total Knee Arthroplasty
    Kang, Yeon Gwi
    Lee, Jang Taek
    Kang, Jong Yeal
    Kim, Ga Hye
    Kim, Tae Kyun
    [J]. JOURNAL OF ARTHROPLASTY, 2016, 31 (01): : 81 - 86
  • [8] Sensitivity analysis of longitudinal binary data with non-monotone missing values
    Minini, P
    Chavance, M
    [J]. BIOSTATISTICS, 2004, 5 (04) : 531 - 544
  • [9] Joint analysis of mixed Poisson and continuous longitudinal data with nonignorable missing values
    Yang, Ying
    Kang, Jian
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (01) : 193 - 207
  • [10] Replacing missing values using trustworthy data values from web data sources
    Jaya, M. Izham
    Sidi, Fatimah
    Yusof, Sharmila Mat
    Affendey, Lilly Suriani
    Ishak, Iskandar
    Jabar, Marzanah A.
    [J]. 6TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL MATHEMATICS (ICCSCM 2017), 2017, 892