Analysis of longitudinal data with intermittent missing values using the stochastic EM algorithm

被引:10
|
作者
Gad, Ahmed M.
Ahmed, Abeer S.
机构
[1] Cairo Univ, Fac Econ & Polit Sci, Dept Stat, Cairo, Egypt
[2] Natl Ctr Social & Criminol Res, Cairo, Egypt
关键词
repeated measures; nonrandom intermittent missing; the stochastic EM algorithm; standard errors; quality of life; breast cancer;
D O I
10.1016/j.csda.2005.04.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Longitudinal data are not uncommon in many disciplines where repeated measurements on a response variable are collected for all subjects. Some intended measurements may not be available for some subjects resulting in a missing data pattern. Dropout pattern occurs when some subjects leave the study prematurely. The missing data pattern is defined as intermittent if a missing value followed by an observed value. When the probability of missingness depends on the missing value, and may be on the observed values, the missing data mechanism is termed as nonrandom. Ignoring the missing values in this case leads to biased inferences. The stochastic EM (SEM) algorithm is proposed and developed to find parameters estimates in the presence of intermittent missing values. Also, in this setting, the Monte Carlo method is developed to find the standard errors of parameters estimates. Finally, the proposed techniques are applied to a real data from the International Breast Cancer Study Group. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:2702 / 2714
页数:13
相关论文
共 50 条
  • [1] Analysis of longitudinal data from animals with missing values using SPSS
    Duricki, Denise A.
    Soleman, Sara
    Moon, Lawrence D. F.
    [J]. NATURE PROTOCOLS, 2016, 11 (06) : 1112 - 1129
  • [2] Analysis of longitudinal data from animals with missing values using SPSS
    Denise A Duricki
    Sara Soleman
    Lawrence D F Moon
    [J]. Nature Protocols, 2016, 11 : 1112 - 1129
  • [3] Missing Values Imputation Using Genetic Algorithm for the Analysis of Traffic Data
    Midde, Ranjit Reddy
    Srinivasa, K. G.
    Reddy, Eswara B.
    [J]. ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY COMPUTATIONS IN ENGINEERING SYSTEMS, ICAIECES 2017, 2018, 668 : 251 - 261
  • [4] Multivariate longitudinal data analysis with censored and intermittent missing responses
    Lin, Tsung-I
    Lachos, Victor H.
    Wang, Wan-Lun
    [J]. STATISTICS IN MEDICINE, 2018, 37 (19) : 2822 - 2835
  • [5] Multibody factorization with uncertainty and missing data using the EM algorithm
    Gruber, A
    Weiss, Y
    [J]. PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, 2004, : 707 - 714
  • [6] A Stochastic EM Algorithm for Progressively Censored Data Analysis
    Zhang, Mimi
    Ye, Zhisheng
    Xie, Min
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2014, 30 (05) : 711 - 722
  • [7] Nonparametric spectral analysis with missing data via the EM algorithm
    Wang, YW
    Stoica, P
    Li, J
    Marzetta, TL
    [J]. DIGITAL SIGNAL PROCESSING, 2005, 15 (02) : 191 - 206
  • [8] Nonparametric spectral analysis with missing data via the em algorithm
    Li, J
    Wang, YW
    Stoica, P
    Marzetta, TL
    [J]. CONFERENCE RECORD OF THE THIRTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 2004, : 8 - 12
  • [9] ESTIMATING MISSING VALUES IN RANDOMIZED COMPLETE BLOCK DESIGN USING EM ALGORITHM
    Sheoran, O. P.
    Kumar, Vinay
    Kundu, Rohit
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2024, 20 (01): : 153 - 159
  • [10] Analyzing Longitudinal Data With Missing Values
    Enders, Craig K.
    [J]. REHABILITATION PSYCHOLOGY, 2011, 56 (04) : 267 - 288