Nonparametric spectral analysis with missing data via the EM algorithm

被引:43
|
作者
Wang, YW
Stoica, P
Li, J
Marzetta, TL
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
[2] Uppsala Univ, Dept Informat Technol, Div Syst & Control, SE-75105 Uppsala, Sweden
[3] Lucent Technol, Bell Labs, Math Sci Res Ctr, Murray Hill, NJ 07974 USA
基金
美国国家科学基金会;
关键词
spectral estimation; missing data; adaptive filtering; APES; expectation maximization;
D O I
10.1016/j.dsp.2004.10.004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider nonparametric complex spectral estimation of data sequences with missing samples occurring in arbitrary patterns. The existing spectral estimation algorithms designed for uniformly sampled complete-data sequences perform poorly when applied to data sequences with missing samples if the missing samples are simply set to zero. Several nonparametric algorithms have recently been developed to deal with the missing-data problem. They include, for example, GAPES for gapped data and PG-APES, PG-CAPON for periodically gapped data. However, they are not really suitable for the general missing-data problem where the missing data samples occur in arbitrary patterns. In this paper, we deal with a general missing-data spectral estimation problem for which we develop two nonparametric missing-data amplitude and phase estimation (MAPES) algorithms, both of which make use of the expectation maximization (EM) algorithm. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:191 / 206
页数:16
相关论文
共 50 条
  • [1] Nonparametric spectral analysis with missing data via the em algorithm
    Li, J
    Wang, YW
    Stoica, P
    Marzetta, TL
    [J]. CONFERENCE RECORD OF THE THIRTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 2004, : 8 - 12
  • [2] A recursive algorithm for nonparametric analysis with missing data
    Newton, MA
    Zhang, YL
    [J]. BIOMETRIKA, 1999, 86 (01) : 15 - 26
  • [3] Nonparametric spectral analysis of wideband spectrum with missing data via sample-and-hold interpolation and deconvolution
    Plantier, G.
    Moreau, S.
    Simon, L.
    Valiere, J. -C.
    Le Duff, A.
    Bailliet, H.
    [J]. DIGITAL SIGNAL PROCESSING, 2012, 22 (06) : 994 - 1004
  • [4] Two-dimensional nonparametric spectral analysis in the missing data case
    Wang, YW
    Li, J
    Stoica, P
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 397 - 400
  • [5] Two-dimensional nonparametric spectral analysis in missing data case
    Wang, Yanwei
    Stoica, Peter
    Li, Jian
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2007, 43 (04) : 1604 - 1616
  • [7] Note on nonparametric spectral analysis of wideband spectrum with missing data via sample-and-hold interpolation and deconvolution
    Nobach, Holger
    [J]. DIGITAL SIGNAL PROCESSING, 2019, 87 : 19 - 20
  • [8] NONPARAMETRIC SPECTRAL-ANALYSIS WITH MISSING OBSERVATIONS
    DAHLHAUS, R
    [J]. SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1987, 49 : 347 - 367
  • [9] EM algorithm in Gaussian copula with missing data
    Ding, Wei
    Song, Peter X. -K.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 101 : 1 - 11
  • [10] Analysis of longitudinal data with intermittent missing values using the stochastic EM algorithm
    Gad, Ahmed M.
    Ahmed, Abeer S.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (10) : 2702 - 2714