Tail density estimation for exploratory data analysis using kernel methods

被引:6
|
作者
Beranger, B. [1 ,2 ]
Duong, T. [1 ,4 ]
Perkins-Kirkpatrick, S. E. [3 ]
Sisson, S. A. [2 ]
机构
[1] Univ Pierre & Marie Curie Paris 6, Theoret & Appl Stat Lab LSTA, F-75005 Paris, France
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia
[3] Univ New South Wales, Climate Change Res Ctr, Sydney, NSW, Australia
[4] Univ Paris Nord Paris 13, Comp Sci Lab LIPN, F-93430 Villetaneuse, France
基金
澳大利亚研究理事会;
关键词
Climate extremes; exploratory data analysis; global climate models; histograms; multivariate kernel density estimation; model selection; MAXIMUM-LIKELIHOOD-ESTIMATION; EXTREME-VALUE DISTRIBUTION; NONPARAMETRIC-ESTIMATION; CROSS-VALIDATION; ESTIMATING PARAMETERS; BANDWIDTH SELECTION; CLIMATE EXTREMES; SPECTRAL MEASURE; AUSTRALIA; DEPENDENCE;
D O I
10.1080/10485252.2018.1537442
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is often critical to accurately model the upper tail behaviour of a random process. Nonparametric density estimation methods are commonly implemented as exploratory data analysis techniques for this purpose and can avoid model specification biases implied by using parametric estimators. In particular, kernel-based estimators place minimal assumptions on the data, and provide improved visualisation over scatterplots and histograms. However kernel density estimators can perform poorly when estimating tail behaviour above a threshold, and can over-emphasise bumps in the density for heavy tailed data. We develop a transformation kernel density estimator which is able to handle heavy tailed and bounded data, and is robust to threshold choice. We derive closed form expressions for its asymptotic bias and variance, which demonstrate its good performance in the tail region. Finite sample performance is illustrated in numerical studies, and in an expanded analysis of the performance of global climate models.
引用
收藏
页码:144 / 174
页数:31
相关论文
共 50 条
  • [41] Crimes Prediction Using Spatio-Temporal Data and Kernel Density Estimation
    Putri, Vinnia Kemala
    Kurniadi, Felix Indra
    2019 ASIA PACIFIC CONFERENCE ON RESEARCH IN INDUSTRIAL AND SYSTEMS ENGINEERING (APCORISE), 2019, : 18 - 23
  • [42] Forecasting electricity smart meter data using conditional kernel density estimation
    Arora, Siddharth
    Taylor, James W.
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2016, 59 : 47 - 59
  • [43] Visualising Crime Clusters in a Space-time Cube: An Exploratory Data-analysis Approach Using Space-time Kernel Density Estimation and Scan Statistics
    Nakaya, Tomoki
    Yano, Keiji
    TRANSACTIONS IN GIS, 2010, 14 (03) : 223 - 239
  • [44] A Case Study on Kernel Density Estimation and Hotspot Analysis Methods in Traffic Safety Management
    Srikanth, Lakshmi
    Srikanth, Ishwarya
    2020 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2020,
  • [45] Unsupervised Discretization Using Kernel Density Estimation
    Biba, Marenglen
    Esposito, Floriana
    Ferilli, Stefano
    di Mauro, Nicola
    Basile, Teresa M. A.
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 696 - 701
  • [46] Density estimation using kernel method with distorter
    Tanaka, H
    Miyoshi, T
    Ichihashi, H
    IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 1224 - 1229
  • [47] Comments on "Kernel density estimation for time series data"
    Perez, Ana
    INTERNATIONAL JOURNAL OF FORECASTING, 2012, 28 (01) : 15 - 19
  • [48] Inverse gamma kernel density estimation for nonnegative data
    Yoshihide Kakizawa
    Gaku Igarashi
    Journal of the Korean Statistical Society, 2017, 46 : 194 - 207
  • [49] Recursive asymmetric kernel density estimation for nonnegative data
    Kakizawa, Yoshihide
    JOURNAL OF NONPARAMETRIC STATISTICS, 2021, 33 (02) : 197 - 224
  • [50] A Fair Classifier Using Kernel Density Estimation
    Cho, Jaewoong
    Hwang, Gyeongjo
    Suh, Changho
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33