Tail density estimation for exploratory data analysis using kernel methods

被引:6
|
作者
Beranger, B. [1 ,2 ]
Duong, T. [1 ,4 ]
Perkins-Kirkpatrick, S. E. [3 ]
Sisson, S. A. [2 ]
机构
[1] Univ Pierre & Marie Curie Paris 6, Theoret & Appl Stat Lab LSTA, F-75005 Paris, France
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia
[3] Univ New South Wales, Climate Change Res Ctr, Sydney, NSW, Australia
[4] Univ Paris Nord Paris 13, Comp Sci Lab LIPN, F-93430 Villetaneuse, France
基金
澳大利亚研究理事会;
关键词
Climate extremes; exploratory data analysis; global climate models; histograms; multivariate kernel density estimation; model selection; MAXIMUM-LIKELIHOOD-ESTIMATION; EXTREME-VALUE DISTRIBUTION; NONPARAMETRIC-ESTIMATION; CROSS-VALIDATION; ESTIMATING PARAMETERS; BANDWIDTH SELECTION; CLIMATE EXTREMES; SPECTRAL MEASURE; AUSTRALIA; DEPENDENCE;
D O I
10.1080/10485252.2018.1537442
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is often critical to accurately model the upper tail behaviour of a random process. Nonparametric density estimation methods are commonly implemented as exploratory data analysis techniques for this purpose and can avoid model specification biases implied by using parametric estimators. In particular, kernel-based estimators place minimal assumptions on the data, and provide improved visualisation over scatterplots and histograms. However kernel density estimators can perform poorly when estimating tail behaviour above a threshold, and can over-emphasise bumps in the density for heavy tailed data. We develop a transformation kernel density estimator which is able to handle heavy tailed and bounded data, and is robust to threshold choice. We derive closed form expressions for its asymptotic bias and variance, which demonstrate its good performance in the tail region. Finite sample performance is illustrated in numerical studies, and in an expanded analysis of the performance of global climate models.
引用
收藏
页码:144 / 174
页数:31
相关论文
共 50 条
  • [21] Using pseudometrics in kernel density estimation
    Hovda, Sigve
    JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (04) : 669 - 696
  • [22] Monitoring of a machining process using kernel principal component analysis and kernel density estimation
    Wo Jae Lee
    Gamini P. Mendis
    Matthew J. Triebe
    John W. Sutherland
    Journal of Intelligent Manufacturing, 2020, 31 : 1175 - 1189
  • [23] Kernel density estimation with doubly truncated data
    Moreira, Carla
    de Una-Alvarez, Jacobo
    ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 501 - 521
  • [24] Monitoring of a machining process using kernel principal component analysis and kernel density estimation
    Lee, Wo Jae
    Mendis, Gamini P.
    Triebe, Matthew J.
    Sutherland, John W.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (05) : 1175 - 1189
  • [25] Asymmetric kernel density estimation for biased data
    Kakizawa, Yoshihide
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2024, 53 (04) : 1110 - 1134
  • [26] DATA STRUCTURES IN KERNEL DENSITY ESTIMATION.
    Devroye, Luc
    Machell, Fred
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, PAMI-7 (03) : 360 - 366
  • [27] Kernel density estimation for time series data
    Harvey, Andrew
    Oryshchenko, Vitaliy
    INTERNATIONAL JOURNAL OF FORECASTING, 2012, 28 (01) : 3 - 14
  • [28] KERNEL DENSITY-ESTIMATION WITH SPHERICAL DATA
    HALL, P
    WATSON, GS
    CABRERA, J
    BIOMETRIKA, 1987, 74 (04) : 751 - 762
  • [29] KERNEL DENSITY-ESTIMATION FOR COMPOSITIONAL DATA
    AITCHISON, J
    LAUDER, IJ
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1985, 34 (02) : 129 - 137
  • [30] Kernel density estimation for undirected dyadic data
    Graham, Bryan S.
    Niu, Fengshi
    Powell, James L.
    JOURNAL OF ECONOMETRICS, 2024, 240 (02)