Tail density estimation for exploratory data analysis using kernel methods

被引:6
|
作者
Beranger, B. [1 ,2 ]
Duong, T. [1 ,4 ]
Perkins-Kirkpatrick, S. E. [3 ]
Sisson, S. A. [2 ]
机构
[1] Univ Pierre & Marie Curie Paris 6, Theoret & Appl Stat Lab LSTA, F-75005 Paris, France
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia
[3] Univ New South Wales, Climate Change Res Ctr, Sydney, NSW, Australia
[4] Univ Paris Nord Paris 13, Comp Sci Lab LIPN, F-93430 Villetaneuse, France
基金
澳大利亚研究理事会;
关键词
Climate extremes; exploratory data analysis; global climate models; histograms; multivariate kernel density estimation; model selection; MAXIMUM-LIKELIHOOD-ESTIMATION; EXTREME-VALUE DISTRIBUTION; NONPARAMETRIC-ESTIMATION; CROSS-VALIDATION; ESTIMATING PARAMETERS; BANDWIDTH SELECTION; CLIMATE EXTREMES; SPECTRAL MEASURE; AUSTRALIA; DEPENDENCE;
D O I
10.1080/10485252.2018.1537442
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is often critical to accurately model the upper tail behaviour of a random process. Nonparametric density estimation methods are commonly implemented as exploratory data analysis techniques for this purpose and can avoid model specification biases implied by using parametric estimators. In particular, kernel-based estimators place minimal assumptions on the data, and provide improved visualisation over scatterplots and histograms. However kernel density estimators can perform poorly when estimating tail behaviour above a threshold, and can over-emphasise bumps in the density for heavy tailed data. We develop a transformation kernel density estimator which is able to handle heavy tailed and bounded data, and is robust to threshold choice. We derive closed form expressions for its asymptotic bias and variance, which demonstrate its good performance in the tail region. Finite sample performance is illustrated in numerical studies, and in an expanded analysis of the performance of global climate models.
引用
收藏
页码:144 / 174
页数:31
相关论文
共 50 条
  • [31] KERNEL DENSITY-ESTIMATION WITH BINNED DATA
    SCOTT, DW
    SHEATHER, SJ
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1985, 14 (06) : 1353 - 1359
  • [32] Unimodal kernel density estimation by data sharpening
    Hall, P
    Kang, KH
    STATISTICA SINICA, 2005, 15 (01) : 73 - 98
  • [33] One Class Process Anomaly Detection Using Kernel Density Estimation Methods
    Lang, Christopher, I
    Sun, Fan-Keng
    Lawler, Bruce
    Dillon, Jack
    Al Dujaili, Ash
    Ruth, John
    Cardillo, Peter
    Alfred, Perry
    Bowers, Alan
    Mckiernan, Adrian
    Boning, Duane S.
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2022, 35 (03) : 457 - 469
  • [34] Identification of crash hotspots using kernel density estimation and kriging methods: a comparison
    Thakali L.
    Kwon T.J.
    Fu L.
    Journal of Modern Transportation, 2015, 23 (2): : 93 - 106
  • [35] Identification of crash hotspots using kernel density estimation and kriging methods:a comparison
    Lalita Thakali
    Tae J.Kwon
    Liping Fu
    Journal of Modern Transportation, 2015, (02) : 93 - 106
  • [36] The Influence of Data Classification Methods on Predictive Accuracy of Kernel Density Estimation Hotspot Maps
    Milic, Nenad
    Popovic, Brankica
    Mijalkovic, Sasa
    Marinkovic, Darko
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2019, 16 (06) : 1053 - 1062
  • [37] A Simple Approach to Traffic Density Estimation by using Kernel Density Estimation
    Yilan, Mikail
    Ozdemir, Mehmet Kemal
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 1865 - 1868
  • [38] Analysis of Aircraft Trajectories Using Fourier Descriptors and Kernel Density Estimation
    Annoni, Ronald, Jr.
    Forster, Carlos H. Q.
    2012 15TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2012, : 1441 - 1446
  • [39] Steganalysis of QIM-Based Data Hiding using Kernel Density Estimation
    Malik, Hafiz
    Subbalakshmi, K. P.
    Chandramouli, R.
    MM&SEC'07: PROCEEDINGS OF THE MULTIMEDIA & SECURITY WORKSHOP 2007, 2007, : 149 - 159
  • [40] Proposal of Online Outlier Detection in Sensor Data Using Kernel Density Estimation
    Haque, Md Atiqul
    Mineno, Hiroshi
    2017 6TH IIAI INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS (IIAI-AAI), 2017, : 1051 - 1052