Crimes Prediction Using Spatio-Temporal Data and Kernel Density Estimation

被引:1
|
作者
Putri, Vinnia Kemala [1 ,2 ]
Kurniadi, Felix Indra [3 ]
机构
[1] Univ Indonesia, Jakarta, Indonesia
[2] Fak Ilmu Komputer, Jakarta, Indonesia
[3] Tanri Abeng Univ, Kota Jakarta Selatan, Indonesia
关键词
crimes prediction; density estimation; spatial data mining; data integration;
D O I
10.1109/APCORISE46197.2019.9318972
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study presents a method to predict crimes by using multiple data sources i.e. spatio-temporal crime dataset and zoning district dataset. The contribution of this study lies in the use of Kernel Density Estimation (KDE) and zoning district dataset to address the issue of crimes prediction. The experiments were performed by training Gradient Boosting Machine (GBM) as a classifier on some subset of features. The best result was achieved by using all features including KDE with smoothing and zoning district feature, namely with multiclass logarithmic loss 2.356104 on validation set and 2.35443 on test set.
引用
收藏
页码:18 / 23
页数:6
相关论文
共 50 条
  • [1] Clustering Spatio-temporal Trajectories Based on Kernel Density Estimation
    Zhang, Pengdong
    Deng, Min
    Van de Weghe, Nico
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 298 - 311
  • [2] Spatio-temporal prediction of crimes using network analytic approach
    Dash, Saroj Kumar
    Safro, Ilya
    Srinivasamurthy, Ravisutha Sakrepatna
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 1912 - 1917
  • [3] Density estimation over spatio-temporal data streams
    Amiri, Aboubacar
    Dabo-Niang, Sophie
    [J]. ECONOMETRICS AND STATISTICS, 2018, 5 (01) : 148 - 170
  • [4] Estimation and prediction of weather variables from surveillance data using spatio-temporal Kriging
    Dalmau, Ramon
    Perez-Batlle, Marc
    Prats, Xavier
    [J]. 2017 IEEE/AIAA 36TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC), 2017,
  • [5] Spatio-temporal photon density estimation using bilateral filtering
    Weber, M
    Milch, M
    Myszkowski, K
    Dmitriev, K
    Rokita, P
    Seidel, HP
    [J]. COMPUTER GRAPHICS INTERNATIONAL, PROCEEDINGS, 2004, : 120 - 127
  • [6] Prediction of spatio-temporal AQI data
    Kim, Kyeong Eun
    Ma, Mi Ru
    Lee, Kyeong Won
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2023, 30 (02) : 119 - 133
  • [7] A spatio-temporal kernel density estimation framework for predictive crime hotspot mapping and evaluation
    Hu, Yujie
    Wang, Fahui
    Guin, Cecile
    Zhu, Haojie
    [J]. APPLIED GEOGRAPHY, 2018, 99 : 89 - 97
  • [8] Approach of the spatio-temporal prediction using vectorial geographic data
    MezzadriCenteno, T
    SaintJoan, D
    Desachy, J
    Vidal, F
    [J]. REMOTE SENSING FOR GEOGRAPHY, GEOLOGY, LAND PLANNING, AND CULTURAL HERITAGE, 1996, 2960 : 96 - 103
  • [9] Estimation of Housing Price Variations Using Spatio-Temporal Data
    Chica-Olmo, Jorge
    Cano-Guervos, Rafael
    Chica-Rivas, Mario
    [J]. SUSTAINABILITY, 2019, 11 (06)
  • [10] An enhancement of location estimation and disaster event prediction using density based SPATIO-temporal clustering with GPS
    Ravikumar, K.
    RajivKannan, A.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (5-6) : 3929 - 3941