Crimes Prediction Using Spatio-Temporal Data and Kernel Density Estimation

被引:1
|
作者
Putri, Vinnia Kemala [1 ,2 ]
Kurniadi, Felix Indra [3 ]
机构
[1] Univ Indonesia, Jakarta, Indonesia
[2] Fak Ilmu Komputer, Jakarta, Indonesia
[3] Tanri Abeng Univ, Kota Jakarta Selatan, Indonesia
关键词
crimes prediction; density estimation; spatial data mining; data integration;
D O I
10.1109/APCORISE46197.2019.9318972
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study presents a method to predict crimes by using multiple data sources i.e. spatio-temporal crime dataset and zoning district dataset. The contribution of this study lies in the use of Kernel Density Estimation (KDE) and zoning district dataset to address the issue of crimes prediction. The experiments were performed by training Gradient Boosting Machine (GBM) as a classifier on some subset of features. The best result was achieved by using all features including KDE with smoothing and zoning district feature, namely with multiclass logarithmic loss 2.356104 on validation set and 2.35443 on test set.
引用
收藏
页码:18 / 23
页数:6
相关论文
共 50 条
  • [31] Motion estimation using spatio-temporal contextual information
    Namuduri, KR
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2004, 14 (08) : 1111 - 1115
  • [32] Fast Motion Estimation using spatio-temporal correlations
    Yoon, Hyo Sun
    Yoo, Jae Myeong
    Dinh, Toan Nguyen
    Son, Hwa Jeong
    Park, Mi Seen
    Lee, Guee Sang
    [J]. ADVANCES IN ARTIFICIAL REALITY AND TELE-EXISTENCE, PROCEEDINGS, 2006, 4282 : 548 - +
  • [33] Vehicle Trajectory Estimation Using Spatio-Temporal MCMC
    Yann Goyat
    Thierry Chateau
    Francois Bardet
    [J]. EURASIP Journal on Advances in Signal Processing, 2010
  • [34] Wind speed prediction using spatio-temporal covariance
    Anup Suryawanshi
    Debraj Ghosh
    [J]. Natural Hazards, 2015, 75 : 1435 - 1449
  • [35] Wind speed prediction using spatio-temporal covariance
    Suryawanshi, Anup
    Ghosh, Debraj
    [J]. NATURAL HAZARDS, 2015, 75 (02) : 1435 - 1449
  • [36] Spatio-Temporal Context Kernel for Activity Recognition
    Yuan, Fei
    Sahbi, Hichem
    Prinet, Veronique
    [J]. 2011 FIRST ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2011, : 436 - 440
  • [37] Automatically recognizing places of interest from unreliable GPS data using spatio-temporal density estimation and line intersections
    Bhattacharya, Tanusri
    Kulik, Lars
    Bailey, James
    [J]. PERVASIVE AND MOBILE COMPUTING, 2015, 19 : 86 - 107
  • [38] SPATIO-TEMPORAL TUBE KERNEL FOR ACTOR RETRIEVAL
    Zhao, Shuji
    Precioso, Frederic
    Cord, Matthieu
    [J]. 2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 1885 - +
  • [39] PREDICTION AND IMPUTATION OF SPATIO-TEMPORAL DATA: DENGUE SURVEILLANCE IN THAILAND
    Lessler, J.
    Reich, N. G.
    Iamsirithaworn, S.
    Cummings, D. A. T.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 173 : S183 - S183
  • [40] DNN-Based Prediction Model for Spatio-Temporal Data
    Zhang, Junbo
    Zheng, Yu
    Qi, Dekang
    Li, Ruiyuan
    Yi, Xiuwen
    [J]. 24TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2016), 2016,