Tail density estimation for exploratory data analysis using kernel methods

被引:6
|
作者
Beranger, B. [1 ,2 ]
Duong, T. [1 ,4 ]
Perkins-Kirkpatrick, S. E. [3 ]
Sisson, S. A. [2 ]
机构
[1] Univ Pierre & Marie Curie Paris 6, Theoret & Appl Stat Lab LSTA, F-75005 Paris, France
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia
[3] Univ New South Wales, Climate Change Res Ctr, Sydney, NSW, Australia
[4] Univ Paris Nord Paris 13, Comp Sci Lab LIPN, F-93430 Villetaneuse, France
基金
澳大利亚研究理事会;
关键词
Climate extremes; exploratory data analysis; global climate models; histograms; multivariate kernel density estimation; model selection; MAXIMUM-LIKELIHOOD-ESTIMATION; EXTREME-VALUE DISTRIBUTION; NONPARAMETRIC-ESTIMATION; CROSS-VALIDATION; ESTIMATING PARAMETERS; BANDWIDTH SELECTION; CLIMATE EXTREMES; SPECTRAL MEASURE; AUSTRALIA; DEPENDENCE;
D O I
10.1080/10485252.2018.1537442
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is often critical to accurately model the upper tail behaviour of a random process. Nonparametric density estimation methods are commonly implemented as exploratory data analysis techniques for this purpose and can avoid model specification biases implied by using parametric estimators. In particular, kernel-based estimators place minimal assumptions on the data, and provide improved visualisation over scatterplots and histograms. However kernel density estimators can perform poorly when estimating tail behaviour above a threshold, and can over-emphasise bumps in the density for heavy tailed data. We develop a transformation kernel density estimator which is able to handle heavy tailed and bounded data, and is robust to threshold choice. We derive closed form expressions for its asymptotic bias and variance, which demonstrate its good performance in the tail region. Finite sample performance is illustrated in numerical studies, and in an expanded analysis of the performance of global climate models.
引用
收藏
页码:144 / 174
页数:31
相关论文
共 50 条
  • [1] Exploratory orientation data analysis: kernel density estimation and clustering
    Schaeben, H.
    1600, Trans Tech Publ, Aedermannsdorf, Switzerland (157-6):
  • [2] How Bandwidth Selection Algorithms Impact Exploratory Data Analysis Using Kernel Density Estimation
    Harpole, Jared K.
    Woods, Carol M.
    Rodebaugh, Thomas L.
    Levinson, Cheri A.
    Lenze, Eric J.
    PSYCHOLOGICAL METHODS, 2014, 19 (03) : 428 - 443
  • [3] Unimodal density estimation using kernel methods
    Hall, P
    Huang, LS
    STATISTICA SINICA, 2002, 12 (04) : 965 - 990
  • [4] Kernel density estimation using weighted data
    Guillamon, A
    Navarro, J
    Ruiz, JM
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (09) : 2123 - 2135
  • [5] On boosting kernel density methods for multivariate data: Density estimation and classification
    Di Marzio M.
    Taylor C.C.
    Statistical Methods and Applications, 2005, 14 (2): : 163 - 178
  • [6] Kernel Density Estimation, Kernel Methods, and Fast Learning in Large Data Sets
    Wang, Shitong
    Wang, Jun
    Chung, Fu-lai
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (01) : 1 - 20
  • [7] Kernel methods for exploratory pattern analysis: A demonstration on text data
    De Bie, T
    Cristianini, N
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2004, 3138 : 16 - 29
  • [8] Body tail adaptive kernel density estimation for nonnegative heavy-tailed data
    Ziane, Yasmina
    Zougab, Nabil
    Adjabi, Small
    MONTE CARLO METHODS AND APPLICATIONS, 2021, 27 (01): : 57 - 69
  • [9] From Gaussian kernel density estimation to kernel methods
    Shitong Wang
    Zhaohong Deng
    Fu-lai Chung
    Wenjun Hu
    International Journal of Machine Learning and Cybernetics, 2013, 4 : 119 - 137
  • [10] From Gaussian kernel density estimation to kernel methods
    Wang, Shitong
    Deng, Zhaohong
    Chung, Fu-lai
    Hu, Wenjun
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2013, 4 (02) : 119 - 137