Kernel methods for exploratory pattern analysis: A demonstration on text data

被引:0
|
作者
De Bie, T
Cristianini, N
机构
[1] Katholieke Univ Leuven, ESAT, SCD, B-3001 Heverlee, Belgium
[2] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel Methods are a class of algorithms for pattern analysis with a number of convenient features. They can deal in a uniform way with a multitude of data types and can be used to detect many types of relations in data. Importantly for applications, they have a modular structure, in that any kernel function can be used with any kernel-based algorithm. This means that customized solutions can be easily developed from a standard library of kernels and algorithms. This paper demonstrates a case study in which many algorithms and kernels are mixed and matched, for a cross-language text analysis task. All the software is available online.
引用
收藏
页码:16 / 29
页数:14
相关论文
共 50 条
  • [1] Tail density estimation for exploratory data analysis using kernel methods
    Beranger, B.
    Duong, T.
    Perkins-Kirkpatrick, S. E.
    Sisson, S. A.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2019, 31 (01) : 144 - 174
  • [2] Fast methods for Kernel-based text analysis
    Kudo, T
    Matsumoto, Y
    41ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, 2003, : 24 - 31
  • [3] An Explicit Mapping for Kernel Data Analysis and Application to Text Analysis
    Miyamoto, Sadaaki
    Kawasaki, Yuichi
    Sawazaki, Keisuke
    PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 618 - 623
  • [4] Microarrays, pattern recognition and exploratory data analysis
    Mertens, BJA
    STATISTICS IN MEDICINE, 2003, 22 (11) : 1879 - 1899
  • [5] Exploratory text data analysis for quality hypothesis generation
    Allen, Theodore T.
    Sui, Zhenhuan
    Akbari, Kaveh
    QUALITY ENGINEERING, 2018, 30 (04) : 701 - 712
  • [6] Exploratory orientation data analysis: kernel density estimation and clustering
    Schaeben, H.
    1600, Trans Tech Publ, Aedermannsdorf, Switzerland (157-6):
  • [7] Typhoon analysis and data mining with kernel methods
    Kitamoto, A
    PATTERN RECOGNITON WITH SUPPORT VECTOR MACHINES, PROCEEDINGS, 2002, 2388 : 237 - 248
  • [8] Kernel methods for nonlinear discriminative data analysis
    Liu, XW
    Mio, W
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 2005, 3757 : 584 - 599
  • [9] Exploratory data analysis methods applied to fMRI
    Lange, O
    Meyer-Bäse, A
    Meyer-Bäse, U
    Wismüller, A
    Hurdal, M
    INTELLIGENT COMPUTING: THEORY AND APPLICATIONS III, 2005, 5803 : 31 - 38
  • [10] Perspective Exploratory Methods for Multidimensional Data Analysis
    Valis, D.
    Zak, L.
    Vintr, Z.
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2019, : 426 - 430