Kernel methods for exploratory pattern analysis: A demonstration on text data

被引:0
|
作者
De Bie, T
Cristianini, N
机构
[1] Katholieke Univ Leuven, ESAT, SCD, B-3001 Heverlee, Belgium
[2] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel Methods are a class of algorithms for pattern analysis with a number of convenient features. They can deal in a uniform way with a multitude of data types and can be used to detect many types of relations in data. Importantly for applications, they have a modular structure, in that any kernel function can be used with any kernel-based algorithm. This means that customized solutions can be easily developed from a standard library of kernels and algorithms. This paper demonstrates a case study in which many algorithms and kernels are mixed and matched, for a cross-language text analysis task. All the software is available online.
引用
收藏
页码:16 / 29
页数:14
相关论文
共 50 条
  • [41] Recent advances in exploratory data analysis with neuro-fuzzy methods
    R. Kruse
    A. Klose
    Soft Computing, 2004, 8 : 381 - 382
  • [42] COMPARISONS OF SOME GRAPHICAL METHODS FOR EXPLORATORY MULTIVARIATE DATA-ANALYSIS
    FRENITITULAER, LWJ
    LOUV, WC
    AMERICAN STATISTICIAN, 1984, 38 (03): : 184 - 188
  • [43] How Bandwidth Selection Algorithms Impact Exploratory Data Analysis Using Kernel Density Estimation
    Harpole, Jared K.
    Woods, Carol M.
    Rodebaugh, Thomas L.
    Levinson, Cheri A.
    Lenze, Eric J.
    PSYCHOLOGICAL METHODS, 2014, 19 (03) : 428 - 443
  • [44] Demonstration of time-frequency analysis methods for finger tapping data
    Liu, W
    Forrester, L
    Whitall, J
    JOURNAL OF SPORT & EXERCISE PSYCHOLOGY, 2004, 26 : S125 - S125
  • [45] Exploratory data analysis
    Morgenthaler, Stephan
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2009, 1 (01): : 33 - 44
  • [46] Exploratory data analysis
    Vierheller, Janine (vierhell@uni-potsdam.de), 1600, Springer Verlag (500):
  • [47] An exploratory text analysis of the autophagy research field
    Yim, Willa Wen-You
    Kurikawa, Yoshitaka
    Mizushima, Noboru
    AUTOPHAGY, 2022, 18 (07) : 1648 - 1661
  • [48] Supporting exploratory text analysis in literature study
    Muralidharan, Aditi
    Hearst, Marti A.
    LITERARY AND LINGUISTIC COMPUTING, 2013, 28 (02): : 283 - 295
  • [49] Comparison of two exploratory data analysis methods for classification of Phyllanthus chemical fingerprint: unsupervised vs. supervised pattern recognition technologies
    Jianru Guo
    QianQian Chen
    Caiyun Wang
    Hongcong Qiu
    Buming Liu
    Zhi-Hong Jiang
    Wei Zhang
    Analytical and Bioanalytical Chemistry, 2015, 407 : 1389 - 1401
  • [50] Comparison of two exploratory data analysis methods for classification of Phyllanthus chemical fingerprint: unsupervised vs. supervised pattern recognition technologies
    Guo, Jianru
    Chen, QianQian
    Wang, Caiyun
    Qiu, Hongcong
    Liu, Buming
    Jiang, Zhi-Hong
    Zhang, Wei
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2015, 407 (05) : 1389 - 1401