On a New Family of Runge-Kutta-Nystrom Pairs of Orders 6(4)

被引:9
|
作者
Kovalnogov, Vladislav N. [1 ]
Fedorov, Ruslan, V [1 ]
Generalov, Dmitry A. [1 ]
Tsvetova, Ekaterina, V [1 ]
Simos, Theodore E. [1 ,2 ,3 ,4 ,5 ]
Tsitouras, Charalampos [6 ]
机构
[1] Ulyanovsk State Tech Univ, Lab Interdisciplinary Problems Energy Prod, 32 Severny Venetz St, Ulyanovsk 432027, Russia
[2] Univ Western Macedonia, Dept Math, GR-52100 Kastoria, Greece
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[4] Neijiang Normal Univ, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Peoples R China
[5] Democritus Univ Thrace, Deptartment Civil Engn, Sect Math, GR-67100 Xanthi, Greece
[6] Natl & Kapodistrian Univ Athens, Gen Deptartment, Euripus Campus, GR-34400 Psachna, Greece
关键词
initial value problem; Runge-Kutta-Nystrom pairs; stability intervals; periodic solutions; 2-STEP METHODS; 9TH ORDER;
D O I
10.3390/math10060875
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, Runge-Kutta-Nystrom pairs of orders 6(4) using six stages per step are considered. The main contribution of the present work is that we introduce a new family of pairs (i.e., new methodology of solution for order conditions) that possesses seven free parameters instead of four, as used by similar pairs until now. Using these extra coefficients efficiently we may construct methods with better properties. Here, we exploit the free parameters in order to derive a pair with extended imaginary stability interval. This type of method may furnish better results on problems with periodic solutions. Extended numerical tests justify our effort.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] New families of symplectic Runge-Kutta-Nystrom integration methods
    Blanes, S
    Casas, F
    Ros, J
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2001, 1988 : 102 - 109
  • [22] Using neural networks for the derivation of Runge-Kutta-Nystrom pairs for integration of orbits
    Tsitouras, Ch
    Famelis, I. Th
    NEW ASTRONOMY, 2012, 17 (04) : 469 - 473
  • [23] Functionally fitted Runge-Kutta-Nystrom methods
    Hoang, N. S.
    Sidje, R. B.
    BIT NUMERICAL MATHEMATICS, 2016, 56 (01) : 129 - 150
  • [24] Functional continuous Runge-Kutta-Nystrom methods
    Eremin, Alexey S.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2016,
  • [25] Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nystrom methods
    Blanes, S
    Moan, PC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 142 (02) : 313 - 330
  • [26] NEW PAIRS OF RUNGE-KUTTA-NYSTROM FORMULAS OF ORDER 3(4) AND 4(5) FOR X=F(T,X,X)
    FEHLBERG, E
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (08): : 367 - 372
  • [27] A Trigonometrically Fitted Symplectic Runge-Kutta-Nystrom Method
    Monovasilis, Th
    Kalogiratou, Z.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [28] A tenth order symplectic Runge-Kutta-Nystrom method
    Tsitouras, C
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1999, 74 (04): : 223 - 230
  • [29] Economical handling of Runge-Kutta-Nystrom step rejection
    Kovalnogov, V. N.
    Fedorov, R. V.
    Karpukhina, M. T.
    Kornilova, M. I.
    Simos, T. E.
    Tsitouras, Ch.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 438
  • [30] Continuous approximation with embedded Runge-Kutta-Nystrom methods
    Baker, TS
    Dormand, JR
    Prince, PJ
    APPLIED NUMERICAL MATHEMATICS, 1999, 29 (02) : 171 - 188