On a New Family of Runge-Kutta-Nystrom Pairs of Orders 6(4)

被引:9
|
作者
Kovalnogov, Vladislav N. [1 ]
Fedorov, Ruslan, V [1 ]
Generalov, Dmitry A. [1 ]
Tsvetova, Ekaterina, V [1 ]
Simos, Theodore E. [1 ,2 ,3 ,4 ,5 ]
Tsitouras, Charalampos [6 ]
机构
[1] Ulyanovsk State Tech Univ, Lab Interdisciplinary Problems Energy Prod, 32 Severny Venetz St, Ulyanovsk 432027, Russia
[2] Univ Western Macedonia, Dept Math, GR-52100 Kastoria, Greece
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[4] Neijiang Normal Univ, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Peoples R China
[5] Democritus Univ Thrace, Deptartment Civil Engn, Sect Math, GR-67100 Xanthi, Greece
[6] Natl & Kapodistrian Univ Athens, Gen Deptartment, Euripus Campus, GR-34400 Psachna, Greece
关键词
initial value problem; Runge-Kutta-Nystrom pairs; stability intervals; periodic solutions; 2-STEP METHODS; 9TH ORDER;
D O I
10.3390/math10060875
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, Runge-Kutta-Nystrom pairs of orders 6(4) using six stages per step are considered. The main contribution of the present work is that we introduce a new family of pairs (i.e., new methodology of solution for order conditions) that possesses seven free parameters instead of four, as used by similar pairs until now. Using these extra coefficients efficiently we may construct methods with better properties. Here, we exploit the free parameters in order to derive a pair with extended imaginary stability interval. This type of method may furnish better results on problems with periodic solutions. Extended numerical tests justify our effort.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1395 - 1398
  • [42] Revised exponentially fitted Runge-Kutta-Nystrom methods
    D'Ambrosio, R.
    Paternoster, B.
    Santomauro, G.
    APPLIED MATHEMATICS LETTERS, 2014, 30 : 56 - 60
  • [43] A general family of explicit Runge-Kutta pairs of orders 6(5)
    Papakostas, SN
    Tsitouras, C
    Papageorgiou, G
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) : 917 - 936
  • [44] Order bound for a family of parallel Runge-Kutta-Nystrom methods through computer algebra
    Paternoster, B
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 35 (09) : 107 - 119
  • [45] New modified Runge-Kutta-Nystrom methods for the numerical integration of the Schrodinger equation
    Kalogiratou, Z.
    Monovasilis, Th.
    Simos, T. E.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (06) : 1639 - 1647
  • [46] Evolutionary Derivation of Quadratic Symplectic Runge-Kutta-Nystrom Methods
    Tsitouras, Ch.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [47] New fractional step Runge-Kutta-Nystrom methods up to order three
    Bujanda, B.
    Moreta, M. J.
    Jorge, J. C.
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 366
  • [48] Parallel linear system solvers for Runge-Kutta-Nystrom methods
    CWI, Amsterdam, Netherlands
    J Comput Appl Math, 1-2 (407-422):
  • [49] Order bound for a family of parallel Runge-Kutta-Nystrom methods through computer algebra
    Paternoster, B.
    Computers and Mathematics with Applications, 1998, 35 (09): : 107 - 119
  • [50] THE CHEBYSHEV METHODS OF PANOVSKY AND RICHARDSON AS RUNGE-KUTTA-NYSTROM METHODS
    COLEMAN, JP
    BOOTH, AS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 61 (03) : 245 - 261