On a New Family of Runge-Kutta-Nystrom Pairs of Orders 6(4)

被引:9
|
作者
Kovalnogov, Vladislav N. [1 ]
Fedorov, Ruslan, V [1 ]
Generalov, Dmitry A. [1 ]
Tsvetova, Ekaterina, V [1 ]
Simos, Theodore E. [1 ,2 ,3 ,4 ,5 ]
Tsitouras, Charalampos [6 ]
机构
[1] Ulyanovsk State Tech Univ, Lab Interdisciplinary Problems Energy Prod, 32 Severny Venetz St, Ulyanovsk 432027, Russia
[2] Univ Western Macedonia, Dept Math, GR-52100 Kastoria, Greece
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[4] Neijiang Normal Univ, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Peoples R China
[5] Democritus Univ Thrace, Deptartment Civil Engn, Sect Math, GR-67100 Xanthi, Greece
[6] Natl & Kapodistrian Univ Athens, Gen Deptartment, Euripus Campus, GR-34400 Psachna, Greece
关键词
initial value problem; Runge-Kutta-Nystrom pairs; stability intervals; periodic solutions; 2-STEP METHODS; 9TH ORDER;
D O I
10.3390/math10060875
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, Runge-Kutta-Nystrom pairs of orders 6(4) using six stages per step are considered. The main contribution of the present work is that we introduce a new family of pairs (i.e., new methodology of solution for order conditions) that possesses seven free parameters instead of four, as used by similar pairs until now. Using these extra coefficients efficiently we may construct methods with better properties. Here, we exploit the free parameters in order to derive a pair with extended imaginary stability interval. This type of method may furnish better results on problems with periodic solutions. Extended numerical tests justify our effort.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] ORDER CONDITIONS FOR CANONICAL RUNGE-KUTTA-NYSTROM METHODS
    CALVO, MP
    SANZSERNA, JM
    BIT, 1992, 32 (01): : 131 - 142
  • [32] A trigonometrically adapted 6(4) explicit Runge-Kutta-Nystrom pair to solve oscillating systems
    Demba, Musa Ahmed
    Ramos, Higinio
    Kumam, Poom
    Watthayu, Wiboonsak
    Senu, Norazak
    Ahmed, Idris
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (01) : 560 - 578
  • [33] Symbolic derivation of Runge-Kutta-Nystrom order conditions
    Tsitouras, Ch.
    Famelis, I. Th.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2009, 46 (03) : 896 - 912
  • [34] Order properties of symplectic Runge-Kutta-Nystrom methods
    Xiao, AG
    Tang, YF
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (4-5) : 569 - 582
  • [35] A NOTE ON A DIAGONALLY IMPLICIT RUNGE-KUTTA-NYSTROM METHOD
    SOMMEIJER, BP
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 19 (03) : 395 - 399
  • [36] Exponentially Fitted Symplectic Runge-Kutta-Nystrom methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 81 - 85
  • [37] Exponentially fitted explicit Runge-Kutta-Nystrom methods
    Franco, JM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 167 (01) : 1 - 19
  • [38] Starting algorithms for implicit Runge-Kutta-Nystrom methods
    Laburta, MP
    APPLIED NUMERICAL MATHEMATICS, 1998, 27 (03) : 233 - 251
  • [39] A 6(4) optimized embedded Runge-Kutta-Nystrom pair for the numerical solution of periodic problems
    Anastassi, Z. A.
    Kosti, A. A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 275 : 311 - 320
  • [40] LOW ORDER PRACTICAL RUNGE-KUTTA-NYSTROM METHODS
    FINE, JM
    COMPUTING, 1987, 38 (04) : 281 - 297