Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nystrom methods

被引:180
|
作者
Blanes, S [1 ]
Moan, PC
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
关键词
differential equations; geometric integrators; partitioned Runge-Kutta; Runge-Kutta-Nystrom; optimised efficiency;
D O I
10.1016/S0377-0427(01)00492-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new symmetric fourth and sixth-order symplectic partitioned Runge-Kutta and Runge-Kutta-Nyström methods. We studied compositions using several extra stages, optimising the efficiency. An effective error, Ef, is defined and an extensive search is carried out using the extra parameters. The new methods have smaller values of Ef than other methods found in the literature. When applied to several examples they perform up to two orders of magnitude better than previously known method, which is in very good agreement with the values of Ef. © 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:313 / 330
页数:18
相关论文
共 50 条
  • [1] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods Derived by Partitioned Runge-Kutta Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1181 - 1185
  • [2] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, Th
    Kalogiratou, Z.
    Simos, T. E.
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 843 - 849
  • [3] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, T.
    Kalogiratou, Z.
    Simos, T. E.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2271 - 2285
  • [4] FURTHER REDUCTION IN THE NUMBER OF INDEPENDENT ORDER CONDITIONS FOR SYMPLECTIC, EXPLICIT PARTITIONED RUNGE-KUTTA AND RUNGE-KUTTA-NYSTROM METHODS
    CALVO, MP
    HAIRER, E
    APPLIED NUMERICAL MATHEMATICS, 1995, 18 (1-3) : 107 - 114
  • [5] SYMPLECTIC PARTITIONED RUNGE-KUTTA METHODS
    SUN, G
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1993, 11 (04): : 365 - 372
  • [6] Exponentially Fitted Symplectic Runge-Kutta-Nystrom methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 81 - 85
  • [7] Order properties of symplectic Runge-Kutta-Nystrom methods
    Xiao, AG
    Tang, YF
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (4-5) : 569 - 582
  • [8] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1395 - 1398
  • [9] A class of symplectic partitioned Runge-Kutta methods
    Gan, Siqing
    Shang, Zaijiu
    Sun, Geng
    APPLIED MATHEMATICS LETTERS, 2013, 26 (09) : 968 - 973
  • [10] LOW ORDER PRACTICAL RUNGE-KUTTA-NYSTROM METHODS
    FINE, JM
    COMPUTING, 1987, 38 (04) : 281 - 297