Energy-Efficient Single-Flux-QuantumBased Neuromorphic Computing

被引:0
|
作者
Schneider, Michael L. [1 ]
Donnelly, Christine A. [1 ]
Russek, Stephen E. [1 ]
Baek, Burm [1 ]
Pufall, Matthew R. [1 ]
Hopkins, Peter F. [1 ]
Rippard, William H. [1 ]
机构
[1] NIST, Boulder, CO 80305 USA
关键词
Neuromorphic computing; single flux quantum; magnetic Josephson junctions;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recent experimental work has demonstrated nano-textured magnetic Josephson junctions (MJJs) that exhibit tunable spiking behavior with ultra-low training energies in the attojoule range. MJJ devices integrated with standard single-fluxquantum neural systems form a new class of neuromorphic technologies that have spiking energies between 10(-18) J and 10(-21) J, operation frequencies up to 100 GHz, and nanoscale plasticity. Here, we present the design of neural cells utilizing MJJs that form the basic elements in multilayer perception and convolutional networks. We present SPICE models, using experimentally derived Verilog A models for MJJs, to assess the performance of these cells in simple neural network structures. Modeling results indicate that the tunable Josephson critical current I-C can function as a weight in a neural network. Using SPICE we model a fully connected two layer network with 9 inputs and 3 outputs.
引用
收藏
页码:24 / 27
页数:4
相关论文
共 50 条
  • [1] Backpropagation for Energy-Efficient Neuromorphic Computing
    Esser, Steve K.
    Appuswamy, Rathinakumar
    Merolla, Paul A.
    Arthur, John V.
    Modha, Dharmendra S.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [2] Energy-efficient memcapacitor devices for neuromorphic computing
    Demasius, Kai-Uwe
    Kirschen, Aron
    Parkin, Stuart
    NATURE ELECTRONICS, 2021, 4 (10) : 748 - 756
  • [3] Silicon photonics for energy-efficient neuromorphic computing
    Tossoun, Bassem
    EMERGING APPLICATIONS IN SILICON PHOTONICS III, 2022, 12334
  • [4] Energy-efficient memcapacitor devices for neuromorphic computing
    Kai-Uwe Demasius
    Aron Kirschen
    Stuart Parkin
    Nature Electronics, 2021, 4 : 748 - 756
  • [5] Neuromorphic Computing for Energy-Efficient Edge Intelligence
    Panda, Priya
    2024 INTERNATIONAL VLSI SYMPOSIUM ON TECHNOLOGY, SYSTEMS AND APPLICATIONS, VLSI TSA, 2024,
  • [6] Convolutional networks for fast, energy-efficient neuromorphic computing
    Esser, Steven K.
    Merolla, Paul A.
    Arthur, John V.
    Cassidy, Andrew S.
    Appuswamy, Rathinakumar
    Andreopoulos, Alexander
    Berg, David J.
    McKinstry, Jeffrey L.
    Melano, Timothy
    Barch, Davis R.
    di Nolfo, Carmelo
    Datta, Pallab
    Amir, Arnon
    Taba, Brian
    Flickner, Myron D.
    Modha, Dharmendra S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (41) : 11441 - 11446
  • [7] Memristor-based Energy-Efficient Neuromorphic Computing
    Tang, Jianshi
    2022 INTERNATIONAL CONFERENCE ON IC DESIGN AND TECHNOLOGY (ICICDT), 2022, : XIX - XIX
  • [8] AxNN: Energy-Efficient Neuromorphic Systems using Approximate Computing
    Venkataramani, Swagath
    Ranjan, Ashish
    Roy, Kaushik
    Raghunathan, Anand
    PROCEEDINGS OF THE 2014 IEEE/ACM INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN (ISLPED), 2014, : 27 - 32
  • [9] Quantum materials for energy-efficient neuromorphic computing: Opportunities and challenges
    Hoffmann, Axel
    Ramanathan, Shriram
    Grollier, Julie
    Kent, Andrew D.
    Rozenberg, Marcelo J.
    Schuller, Ivan K.
    Shpyrko, Oleg G.
    Dynes, Robert C.
    Fainman, Yeshaiahu
    Frano, Alex
    Fullerton, Eric E.
    Galli, Giulia
    Lomakin, Vitaliy
    Ong, Shyue Ping
    Petford-Long, Amanda K.
    Schuller, Jonathan A.
    Stiles, Mark D.
    Takamura, Yayoi
    Zhu, Yimei
    APL MATERIALS, 2022, 10 (07)
  • [10] Organic Optoelectronic Synaptic Devices for Energy-Efficient Neuromorphic Computing
    Li, Qingxuan
    Wang, Tianyu
    Hu, Xuemeng
    Wu, Xiaohan
    Zhu, Hao
    Ji, Li
    Sun, Qingqing
    Zhang, David Wei
    Chen, Lin
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (07) : 1089 - 1092