Silicon photonics for energy-efficient neuromorphic computing

被引:0
|
作者
Tossoun, Bassem [1 ]
机构
[1] Hewlett Packard Enterprise, Hewlett Packard Labs, 820 N McCarthy Blvd, Milpitas, CA 94035 USA
关键词
silicon photonics; neuromorphic computing; optical computing; PHOTODIODES;
D O I
10.1117/12.2656106
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
New machine learning algorithms such as deep neural networks and the availability of large datasets have created a large drive towards new types of hardware capable of executing these algorithms with higher energy-efficiency. Recently, silicon photonics has emerged as a promising hardware platform for neuromorphic computing due to its inherent capability to process linear and non-linear operations and transmit a high bandwidth of data in parallel. At Hewlett Packard Labs, an energy-efficient dense-wavelength division multiplexing (DWDM) silicon photonics platform has been developed as the underlying foundation for innovative neuromorphic computing architectures. The latest research on our silicon photonic neuromorphic platform will be presented and discussed.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A Survey of Silicon Photonics for Energy-Efficient Manycore Computing
    Pasricha, Sudeep
    Nikdast, Mahdi
    IEEE DESIGN & TEST, 2020, 37 (04) : 60 - 81
  • [2] Backpropagation for Energy-Efficient Neuromorphic Computing
    Esser, Steve K.
    Appuswamy, Rathinakumar
    Merolla, Paul A.
    Arthur, John V.
    Modha, Dharmendra S.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [3] Silicon Nanowire Charge Trapping Memory for Energy-Efficient Neuromorphic Computing
    Ansari, Md. Hasan Raza
    Kannan, Udaya Mohanan
    El-Atab, Nazek
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2023, 22 : 409 - 416
  • [4] SILICON PHOTONICS Energy-efficient communication
    Asghari, Mehdi
    Krishnamoorthy, Ashok V.
    NATURE PHOTONICS, 2011, 5 (05) : 268 - 270
  • [5] Energy-efficient memcapacitor devices for neuromorphic computing
    Demasius, Kai-Uwe
    Kirschen, Aron
    Parkin, Stuart
    NATURE ELECTRONICS, 2021, 4 (10) : 748 - 756
  • [6] Energy-efficient memcapacitor devices for neuromorphic computing
    Kai-Uwe Demasius
    Aron Kirschen
    Stuart Parkin
    Nature Electronics, 2021, 4 : 748 - 756
  • [7] Neuromorphic Computing for Energy-Efficient Edge Intelligence
    Panda, Priya
    2024 INTERNATIONAL VLSI SYMPOSIUM ON TECHNOLOGY, SYSTEMS AND APPLICATIONS, VLSI TSA, 2024,
  • [8] Convolutional networks for fast, energy-efficient neuromorphic computing
    Esser, Steven K.
    Merolla, Paul A.
    Arthur, John V.
    Cassidy, Andrew S.
    Appuswamy, Rathinakumar
    Andreopoulos, Alexander
    Berg, David J.
    McKinstry, Jeffrey L.
    Melano, Timothy
    Barch, Davis R.
    di Nolfo, Carmelo
    Datta, Pallab
    Amir, Arnon
    Taba, Brian
    Flickner, Myron D.
    Modha, Dharmendra S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (41) : 11441 - 11446
  • [9] Memristor-based Energy-Efficient Neuromorphic Computing
    Tang, Jianshi
    2022 INTERNATIONAL CONFERENCE ON IC DESIGN AND TECHNOLOGY (ICICDT), 2022, : XIX - XIX
  • [10] Silicon Photonics Coprocessors for Energy Efficient Computing
    Jalali, Bahram
    Mahjoubfar, Ata
    Solli, Daniel
    Asghari, Mohamad
    Jiang, Yunshan
    Chen, Claire L.
    2015 2ND INTERNATIONAL CONFERENCE ON OPTO-ELECTRONICS AND APPLIED OPTICS (IEM OPTRONIX), 2015,