Energy-efficient memcapacitor devices for neuromorphic computing

被引:0
|
作者
Kai-Uwe Demasius
Aron Kirschen
Stuart Parkin
机构
[1] Max Planck Institute of Microstructure Physics,
[2] SEMRON GmbH,undefined
来源
Nature Electronics | 2021年 / 4卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Data-intensive computing operations, such as training neural networks, are essential for applications in artificial intelligence but are energy intensive. One solution is to develop specialized hardware onto which neural networks can be directly mapped, and arrays of memristive devices can, for example, be trained to enable parallel multiply–accumulate operations. Here we show that memcapacitive devices that exploit the principle of charge shielding can offer a highly energy-efficient approach for implementing parallel multiply–accumulate operations. We fabricate a crossbar array of 156 microscale memcapacitor devices and use it to train a neural network that could distinguish the letters ‘M’, ‘P’ and ‘I’. Modelling these arrays suggests that this approach could offer an energy efficiency of 29,600 tera-operations per second per watt, while ensuring high precision (6–8 bits). Simulations also show that the devices could potentially be scaled down to a lateral size of around 45 nm.
引用
收藏
页码:748 / 756
页数:8
相关论文
共 50 条
  • [1] Energy-efficient memcapacitor devices for neuromorphic computing
    Demasius, Kai-Uwe
    Kirschen, Aron
    Parkin, Stuart
    [J]. NATURE ELECTRONICS, 2021, 4 (10) : 748 - 756
  • [2] Organic Optoelectronic Synaptic Devices for Energy-Efficient Neuromorphic Computing
    Li, Qingxuan
    Wang, Tianyu
    Hu, Xuemeng
    Wu, Xiaohan
    Zhu, Hao
    Ji, Li
    Sun, Qingqing
    Zhang, David Wei
    Chen, Lin
    [J]. IEEE ELECTRON DEVICE LETTERS, 2022, 43 (07) : 1089 - 1092
  • [3] Backpropagation for Energy-Efficient Neuromorphic Computing
    Esser, Steve K.
    Appuswamy, Rathinakumar
    Merolla, Paul A.
    Arthur, John V.
    Modha, Dharmendra S.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [4] Silicon photonics for energy-efficient neuromorphic computing
    Tossoun, Bassem
    [J]. EMERGING APPLICATIONS IN SILICON PHOTONICS III, 2022, 12334
  • [5] Neuromorphic Computing for Energy-Efficient Edge Intelligence
    Panda, Priya
    [J]. 2024 INTERNATIONAL VLSI SYMPOSIUM ON TECHNOLOGY, SYSTEMS AND APPLICATIONS, VLSI TSA, 2024,
  • [6] Memristor-based Energy-Efficient Neuromorphic Computing
    Tang, Jianshi
    [J]. 2022 INTERNATIONAL CONFERENCE ON IC DESIGN AND TECHNOLOGY (ICICDT), 2022, : XIX - XIX
  • [7] Convolutional networks for fast, energy-efficient neuromorphic computing
    Esser, Steven K.
    Merolla, Paul A.
    Arthur, John V.
    Cassidy, Andrew S.
    Appuswamy, Rathinakumar
    Andreopoulos, Alexander
    Berg, David J.
    McKinstry, Jeffrey L.
    Melano, Timothy
    Barch, Davis R.
    di Nolfo, Carmelo
    Datta, Pallab
    Amir, Arnon
    Taba, Brian
    Flickner, Myron D.
    Modha, Dharmendra S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (41) : 11441 - 11446
  • [8] Energy-Efficient Single-Flux-QuantumBased Neuromorphic Computing
    Schneider, Michael L.
    Donnelly, Christine A.
    Russek, Stephen E.
    Baek, Burm
    Pufall, Matthew R.
    Hopkins, Peter F.
    Rippard, William H.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC), 2017, : 24 - 27
  • [9] AxNN: Energy-Efficient Neuromorphic Systems using Approximate Computing
    Venkataramani, Swagath
    Ranjan, Ashish
    Roy, Kaushik
    Raghunathan, Anand
    [J]. PROCEEDINGS OF THE 2014 IEEE/ACM INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN (ISLPED), 2014, : 27 - 32
  • [10] Quantum materials for energy-efficient neuromorphic computing: Opportunities and challenges
    Hoffmann, Axel
    Ramanathan, Shriram
    Grollier, Julie
    Kent, Andrew D.
    Rozenberg, Marcelo J.
    Schuller, Ivan K.
    Shpyrko, Oleg G.
    Dynes, Robert C.
    Fainman, Yeshaiahu
    Frano, Alex
    Fullerton, Eric E.
    Galli, Giulia
    Lomakin, Vitaliy
    Ong, Shyue Ping
    Petford-Long, Amanda K.
    Schuller, Jonathan A.
    Stiles, Mark D.
    Takamura, Yayoi
    Zhu, Yimei
    [J]. APL MATERIALS, 2022, 10 (07)