Energy-Efficient Single-Flux-QuantumBased Neuromorphic Computing

被引:0
|
作者
Schneider, Michael L. [1 ]
Donnelly, Christine A. [1 ]
Russek, Stephen E. [1 ]
Baek, Burm [1 ]
Pufall, Matthew R. [1 ]
Hopkins, Peter F. [1 ]
Rippard, William H. [1 ]
机构
[1] NIST, Boulder, CO 80305 USA
关键词
Neuromorphic computing; single flux quantum; magnetic Josephson junctions;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recent experimental work has demonstrated nano-textured magnetic Josephson junctions (MJJs) that exhibit tunable spiking behavior with ultra-low training energies in the attojoule range. MJJ devices integrated with standard single-fluxquantum neural systems form a new class of neuromorphic technologies that have spiking energies between 10(-18) J and 10(-21) J, operation frequencies up to 100 GHz, and nanoscale plasticity. Here, we present the design of neural cells utilizing MJJs that form the basic elements in multilayer perception and convolutional networks. We present SPICE models, using experimentally derived Verilog A models for MJJs, to assess the performance of these cells in simple neural network structures. Modeling results indicate that the tunable Josephson critical current I-C can function as a weight in a neural network. Using SPICE we model a fully connected two layer network with 9 inputs and 3 outputs.
引用
收藏
页码:24 / 27
页数:4
相关论文
共 50 条
  • [21] Energy-Efficient Single Flux Quantum Technology
    Mukhanov, Oleg A.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2011, 21 (03) : 760 - 769
  • [22] Single SiGe Transistor Based Energy-Efficient Leaky Integrate-and-Fire Neuron for Neuromorphic Computing
    Khanday, Mudasir A.
    Khanday, Farooq A.
    Bashir, Faisal
    NEURAL PROCESSING LETTERS, 2023, 55 (06) : 6997 - 7007
  • [23] Single SiGe Transistor Based Energy-Efficient Leaky Integrate-and-Fire Neuron for Neuromorphic Computing
    Mudasir A. Khanday
    Farooq A. Khanday
    Faisal Bashir
    Neural Processing Letters, 2023, 55 : 6997 - 7007
  • [24] Voltage-Driven Adaptive Spintronic Neuron for Energy-Efficient Neuromorphic Computing
    陈亚博
    杨晓阔
    闫涛
    危波
    崔焕卿
    李成
    刘嘉豪
    宋明旭
    蔡理
    Chinese Physics Letters, 2020, (07) : 174 - 178
  • [25] An Energy-Efficient Solid-State Organic Device Array for Neuromorphic Computing
    Hu, Lan Shen
    Fattori, Marco
    Schilp, Winston
    Verbeek, Roy
    Kazemzadeh, Setareh
    van de Burgt, Yoeri
    Kronemeijer, Auke Jisk
    Gelinck, Gerwin
    Cantatore, Eugenio
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (12) : 6520 - 6525
  • [26] Achieving Green AI with Energy-Efficient Deep Learning Using Neuromorphic Computing
    Luo, Tao
    Wong, Weng-Fai
    Goh, Rick Siow Mong
    Do, Anh Tuan
    Chen, Zhixian
    Li, Haizhou
    Jiang, Wenyu
    Yau, Weiyun
    COMMUNICATIONS OF THE ACM, 2023, 66 (07) : 52 - 57
  • [27] Organic High-Temperature Synaptic Phototransistors for Energy-Efficient Neuromorphic Computing
    Guo, Ziyi
    Zhang, Junyao
    Yang, Ben
    Li, Li
    Liu, Xu
    Xu, Yutong
    Wu, Yue
    Guo, Pu
    Sun, Tongrui
    Dai, Shilei
    Liang, Haixia
    Wang, Jun
    Zou, Yidong
    Xiong, Lize
    Huang, Jia
    ADVANCED MATERIALS, 2024, 36 (13)
  • [28] Voltage-Driven Adaptive Spintronic Neuron for Energy-Efficient Neuromorphic Computing
    陈亚博
    杨晓阔
    闫涛
    危波
    崔焕卿
    李成
    刘嘉豪
    宋明旭
    蔡理
    Chinese Physics Letters, 2020, 37 (07) : 174 - 178
  • [29] Voltage-Driven Adaptive Spintronic Neuron for Energy-Efficient Neuromorphic Computing
    Chen, Ya-Bo
    Yang, Xiao-Kuo
    Yan, Tao
    Wei, Bo
    Cui, Huan-Qing
    Li, Cheng
    Liu, Jia-Hao
    Song, Ming-Xu
    Cai, Li
    CHINESE PHYSICS LETTERS, 2020, 37 (07)
  • [30] An Energy-Efficient Computing-in-Memory Neuromorphic System with On-Chip Training
    Zhao, Zhao
    Wang, Yuan
    Zhang, Xinyue
    Cui, Xiaoxin
    Huang, Ru
    2019 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS 2019), 2019,