Energy-Efficient Single-Flux-QuantumBased Neuromorphic Computing

被引:0
|
作者
Schneider, Michael L. [1 ]
Donnelly, Christine A. [1 ]
Russek, Stephen E. [1 ]
Baek, Burm [1 ]
Pufall, Matthew R. [1 ]
Hopkins, Peter F. [1 ]
Rippard, William H. [1 ]
机构
[1] NIST, Boulder, CO 80305 USA
关键词
Neuromorphic computing; single flux quantum; magnetic Josephson junctions;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recent experimental work has demonstrated nano-textured magnetic Josephson junctions (MJJs) that exhibit tunable spiking behavior with ultra-low training energies in the attojoule range. MJJ devices integrated with standard single-fluxquantum neural systems form a new class of neuromorphic technologies that have spiking energies between 10(-18) J and 10(-21) J, operation frequencies up to 100 GHz, and nanoscale plasticity. Here, we present the design of neural cells utilizing MJJs that form the basic elements in multilayer perception and convolutional networks. We present SPICE models, using experimentally derived Verilog A models for MJJs, to assess the performance of these cells in simple neural network structures. Modeling results indicate that the tunable Josephson critical current I-C can function as a weight in a neural network. Using SPICE we model a fully connected two layer network with 9 inputs and 3 outputs.
引用
收藏
页码:24 / 27
页数:4
相关论文
共 50 条
  • [41] Energy-Efficient on-Board Radio Resource Management for Satellite Communications via Neuromorphic Computing
    Ortiz, Flor
    Skatchkovsky, Nicolas
    Lagunas, Eva
    Martins, Wallace A.
    Eappen, Geoffrey
    Daoud, Saed
    Simeone, Osvaldo
    Rajendran, Bipin
    Chatzinotas, Symeon
    IEEE Transactions on Machine Learning in Communications and Networking, 2024, 2 : 169 - 189
  • [42] Design of Many-Core Big Little μBrains for Energy-Efficient Embedded Neuromorphic Computing
    Varshika, M. Lakshmi
    Balaji, Marsha
    Corradi, Federico
    Das, Anup
    Stuijt, Jan
    Catthoor, Francky
    PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022), 2022, : 1011 - 1016
  • [43] A FeFET with a novel MFMFIS gate stack: towards energy-efficient and ultrafast NVMs for neuromorphic computing
    Ali, Tarek
    Mertens, Konstantin
    Kuehnel, Kati
    Rudolph, Matthias
    Oehler, Sebastian
    Lehninger, David
    Mueller, Franz
    Revello, Ricardo
    Hoffmann, Raik
    Zimmermann, Katrin
    Kaempfe, Thomas
    Czernohorsky, Malte
    Seidel, Konrad
    Van Houdt, Jan
    Eng, Lukas M.
    NANOTECHNOLOGY, 2021, 32 (42)
  • [44] Metaplastic and energy-efficient biocompatible graphene artificial synaptic transistors for enhanced accuracy neuromorphic computing
    Kireev, Dmitry
    Liu, Samuel
    Jin, Harrison
    Xiao, T. Patrick
    Bennett, Christopher H.
    Akinwande, Deji
    Incorvia, Jean Anne C.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [45] SENeCA: Scalable Energy-efficient Neuromorphic Computer Architecture
    Yousefzadeh, Amirreza
    Van Schaik, Gert-Jan
    Tahghighi, Mohammad
    Detterer, Paul
    Traferro, Stefano
    Hijdra, Martijn
    Stuijt, Jan
    Corradi, Federico
    Sifalakis, Manolis
    Konijnenburg, Mario
    2022 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2022): INTELLIGENT TECHNOLOGY IN THE POST-PANDEMIC ERA, 2022, : 371 - 374
  • [46] Research on the Bias Network of Energy-Efficient Single Flux Quantum Circuits
    Li, Guanqun
    Ren, Jie
    Wu, Yu
    Ying, Liliang
    Niu, Minghui
    Chen, Liyun
    Wang, Zhen
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2019, 29 (05)
  • [47] Thermally stable threshold selector based on CuAg alloy for energy-efficient memory and neuromorphic computing applications
    Zhou, Xi
    Zhao, Liang
    Yan, Chu
    Zhen, Weili
    Lin, Yinyue
    Li, Le
    Du, Guanlin
    Lu, Linfeng
    Zhang, Shan-Ting
    Lu, Zhichao
    Li, Dongdong
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [48] Extremely energy-efficient, magnetic field-free, skyrmion-based memristors for neuromorphic computing
    Joy, Ajin
    Satheesh, Sreyas
    Kumar, P. S. Anil
    APPLIED PHYSICS LETTERS, 2023, 123 (21)
  • [49] An Adiabatic Capacitive Artificial Neuron With RRAM-Based Threshold Detection for Energy-Efficient Neuromorphic Computing
    Maheshwari, Sachin
    Serb, Alexander
    Papavassiliou, Christos
    Prodromakis, Themistoklis
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (09) : 3512 - 3525
  • [50] Thermally stable threshold selector based on CuAg alloy for energy-efficient memory and neuromorphic computing applications
    Xi Zhou
    Liang Zhao
    Chu Yan
    Weili Zhen
    Yinyue Lin
    Le Li
    Guanlin Du
    Linfeng Lu
    Shan-Ting Zhang
    Zhichao Lu
    Dongdong Li
    Nature Communications, 14