A tight lower bound for computing the diameter of a 3D convex polytope

被引:3
|
作者
Fournier, Herve
Vigneron, Antoine
机构
[1] Univ Versailles St Quentin En Yuvelines, Lab PRiSM, F-78035 Versailles, France
[2] INRA, UR341 Math & Informat Appl, F-78352 Jouy En Josas, France
关键词
computational geometry; lower bound; diameter; convex polytope; hopcroft's problem;
D O I
10.1007/s00453-007-9010-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The diameter of a set P of n points in R-d is the maximum Euclidean distance between any two points in P. If P is the vertex set of a 3-dimensional convex polytope, and if the combinatorial structure of this polytope is given, we prove that, in the worst case, deciding whether the diameter of P is smaller than 1 requires Omega(n log n) time in the algebraic computation tree model. It shows that the O(n log n) time algorithm of Ramos for computing the diameter of a point set in R-3 is optimal for computing the diameter of a 3-polytope. We also give a linear time reduction from Hopcroft's problem of finding an incidence between points and lines in R-2 to the diameter problem for a point set in R-7.
引用
收藏
页码:245 / 257
页数:13
相关论文
共 50 条
  • [31] Computing 3D Periodic Triangulations
    Caroli, Manuel
    Teillaud, Monique
    ALGORITHMS - ESA 2009, PROCEEDINGS, 2009, 5757 : 59 - 70
  • [32] 3D topological quantum computing
    Asselmeyer-Maluga, Torsten
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2021, 19 (04)
  • [33] 3D integration advances computing
    Sherief Reda
    Nature, 2017, 547 : 38 - 39
  • [34] 3D Integration for Quantum Computing
    Ishihara, Ryoichi
    2023 IEEE INTERNATIONAL 3D SYSTEMS INTEGRATION CONFERENCE, 3DIC, 2023,
  • [35] 3D interconnects for quantum computing
    Derakhshandeh, Jaber
    Dangol, Anish
    Hussain, Tassawar
    Stegmann, Heiko
    Vadiraj, A. M.
    Dhakras, Prathamesh
    Witters, Thomas
    Shafahian, Ehsan
    Punith, Kumar M. K.
    Gerets, Carine
    Radisic, Aleksandar
    Vaquilar, Aldrin
    Goehnermeier, Aksel
    Wan, Danny
    Miller, Andy
    Jourdain, Anne
    Cherman, Vladimir
    Beyer, Gerald
    Beyne, Eric
    De Greve, Kristiaan
    PROCEEDINGS OF THE IEEE 74TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE, ECTC 2024, 2024, : 821 - 828
  • [36] 3D integration advances computing
    Reda, Sherief
    NATURE, 2017, 547 (7661) : 38 - 40
  • [37] Exponential lower bound for the translative kissing numbers of d-dimensional convex bodies
    Talata, I
    DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 19 (03) : 447 - 455
  • [38] Posterior Cramer-Rao Lower Bound for Angle-only Filtering in 3D
    Mallick, Mahendra
    Arulampalam, Sanjeev
    Yan, Yanjun
    2018 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2018, : 349 - 354
  • [39] A tight lower bound on the maximum genus of 3-edge connected loopless graphs
    Li Deming
    Liu Yanpei
    Acta Mathematicae Applicatae Sinica, 1999, 15 (4) : 361 - 367
  • [40] An upper bound for 3D slicing floorplans
    Salewski, S
    Barke, E
    ASP-DAC/VLSI DESIGN 2002: 7TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE AND 15TH INTERNATIONAL CONFERENCE ON VLSI DESIGN, PROCEEDINGS, 2002, : 567 - 572