A tight lower bound for computing the diameter of a 3D convex polytope

被引:3
|
作者
Fournier, Herve
Vigneron, Antoine
机构
[1] Univ Versailles St Quentin En Yuvelines, Lab PRiSM, F-78035 Versailles, France
[2] INRA, UR341 Math & Informat Appl, F-78352 Jouy En Josas, France
关键词
computational geometry; lower bound; diameter; convex polytope; hopcroft's problem;
D O I
10.1007/s00453-007-9010-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The diameter of a set P of n points in R-d is the maximum Euclidean distance between any two points in P. If P is the vertex set of a 3-dimensional convex polytope, and if the combinatorial structure of this polytope is given, we prove that, in the worst case, deciding whether the diameter of P is smaller than 1 requires Omega(n log n) time in the algebraic computation tree model. It shows that the O(n log n) time algorithm of Ramos for computing the diameter of a point set in R-3 is optimal for computing the diameter of a 3-polytope. We also give a linear time reduction from Hopcroft's problem of finding an incidence between points and lines in R-2 to the diameter problem for a point set in R-7.
引用
收藏
页码:245 / 257
页数:13
相关论文
共 50 条
  • [21] Nonlinear approximation of 3D smectic liquid crystals: sharp lower bound and compactness
    Novack, Michael
    Yan, Xiaodong
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (04)
  • [22] 3D concrete printing: A lower bound analytical model for buildability performance quantification
    Kruger, Jacques
    Zeranka, Stephan
    van Ziji, Gideon
    AUTOMATION IN CONSTRUCTION, 2019, 106
  • [23] A TIGHT LOWER BOUND ON THE MAXIMUM GENUS OF A 3-CONNECTED LOOPLESS MULTIGRAPH
    Li Deming Liu YanpeiDept.of Math.
    AppliedMathematics:AJournalofChineseUniversities, 2000, (04) : 369 - 376
  • [24] A tight lower bound on the maximum genus of a 3-connected loopless multigraph
    Li D.
    Liu Y.
    Applied Mathematics-A Journal of Chinese Universities, 2000, 15 (4) : 369 - 376
  • [25] A nearly tight lower bound for the d-dimensional cow-path problem
    Bansal, Nikhil
    Kuszmaul, John
    Kuszmaul, William
    INFORMATION PROCESSING LETTERS, 2023, 182
  • [26] Large diameter shafts: a 3D analysis
    Dias, T. G. S.
    Farias, M. M.
    Assis, A. P.
    UNDERGROUND - THE WAY TO THE FUTURE, 2013, : 987 - 994
  • [27] ON STABBING LINES FOR CONVEX POLYHEDRA IN 3D
    AGARWAL, PK
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1994, 4 (04): : 177 - 189
  • [28] Robust Kinetic Convex Hulls in 3D
    Acar, Umut A.
    Blelloch, Guy E.
    Tangwongsan, Kanat
    Tuerkoglu, Duru
    ALGORITHMS - ESA 2008, 2008, 5193 : 29 - +
  • [29] Hausdorff approximation of 3D convex polytopes
    Lopez, Mario A.
    Reisner, Shlomo
    INFORMATION PROCESSING LETTERS, 2008, 107 (02) : 76 - 82
  • [30] Computing 3D Bifurcation Diagrams
    Stiefs, Dirk
    Gross, Thilo
    Venturino, Ezio
    Feudel, Ulrike
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 958 - +