A tight lower bound for computing the diameter of a 3D convex polytope

被引:3
|
作者
Fournier, Herve
Vigneron, Antoine
机构
[1] Univ Versailles St Quentin En Yuvelines, Lab PRiSM, F-78035 Versailles, France
[2] INRA, UR341 Math & Informat Appl, F-78352 Jouy En Josas, France
关键词
computational geometry; lower bound; diameter; convex polytope; hopcroft's problem;
D O I
10.1007/s00453-007-9010-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The diameter of a set P of n points in R-d is the maximum Euclidean distance between any two points in P. If P is the vertex set of a 3-dimensional convex polytope, and if the combinatorial structure of this polytope is given, we prove that, in the worst case, deciding whether the diameter of P is smaller than 1 requires Omega(n log n) time in the algebraic computation tree model. It shows that the O(n log n) time algorithm of Ramos for computing the diameter of a point set in R-3 is optimal for computing the diameter of a 3-polytope. We also give a linear time reduction from Hopcroft's problem of finding an incidence between points and lines in R-2 to the diameter problem for a point set in R-7.
引用
收藏
页码:245 / 257
页数:13
相关论文
共 50 条
  • [41] Gaze point detection by computing the 3D positions and 3D motion of face
    Park, Kang Ryoung
    Kim, Jaihie
    IEICE Transactions on Information and Systems, 2000, E83-D (04) : 884 - 894
  • [42] Gaze point detection by computing the 3D positions and 3D motion of face
    Park, KR
    Kim, J
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2000, E83D (04): : 884 - 894
  • [43] PATCH PEELING FROM 3D CONVEX HULL
    Pivee, Bostjan
    Zalik, Borut
    10TH INTERNATIONAL MULTIDISCIPLINARY SCIENTIFIC GEOCONFERENCE: SGEM 2010, VOL I, 2010, : 1085 - 1092
  • [44] 3D convex contact forms and the Ruelle invariant
    J. Chaidez
    O. Edtmair
    Inventiones mathematicae, 2022, 229 : 243 - 301
  • [45] THE PARALLEL 3D CONVEX HULL PROBLEM REVISITED
    Amato, Nancy M.
    Preparata, Franco P.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1992, 2 (02) : 163 - 173
  • [46] Yield surface approximation for lower and upper bound yield design of 3D composite frame structures
    Bleyer, Jeremy
    de Buhan, Patrick
    COMPUTERS & STRUCTURES, 2013, 129 : 86 - 98
  • [47] 3D optogenetic control of arteriole diameter in vivo
    O'Herron, Philip J.
    Hartmann, David A.
    Xie, Kun
    Kara, Prakash
    Shih, Andy Y.
    ELIFE, 2022, 11
  • [48] Linear time approximation of 3D convex polytopes
    Lopez, MA
    Reisner, S
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2002, 23 (03): : 291 - 301
  • [49] Construction of an Approximate 3D Orthogonal Convex Skull
    Karmakar, Nilanjana
    Biswas, Arindam
    COMPUTATIONAL TOPOLOGY IN IMAGE CONTEXT, CTIC 2016, 2016, 9667 : 180 - 192
  • [50] EXPERIMENTS IN THE PARALLEL COMPUTATION OF 3D CONVEX HULLS
    CLARE, AR
    COMPUTER GRAPHICS FORUM, 1994, 13 (01) : 21 - 36