Monotonicity preserving interpolatory subdivision schemes

被引:20
|
作者
Kuijt, F [1 ]
van Damme, R [1 ]
机构
[1] Univ Twente, Fac Math Sci, NL-7500 AE Enschede, Netherlands
关键词
subdivision; interpolation; monotonicity preservation; shape preservation; computer aided geometric design;
D O I
10.1016/S0377-0427(98)00220-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of local nonlinear stationary subdivision schemes that interpolate equidistant data and that preserve monotonicity in the data is examined. The limit function obtained after repeated application of these schemes exists and is monotone for arbitrary monotone initial data. Next a class of rational subdivision schemes is investigated. These schemes generate limit functions that are continuously differentiable for any strictly monotone data. The approximation order of the schemes is four. Some generalisations, such as preservation of piecewise monotonicity and application to homogeneous grid refinement, are briefly discussed. (C) 1999 Elsevier Science B.V. All rights reserved. AMS classification: 41A05; 41A29; 65D05; 65D17.
引用
收藏
页码:203 / 229
页数:27
相关论文
共 50 条
  • [31] TERNARY INTERPOLATORY SUBDIVISION SCHEMES ORIGINATED FROM SPLINES
    Averbuch, Amir Z.
    Zheludev, Valery A.
    Fatakhov, Gary B.
    Yakubov, Eduard H.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2011, 9 (04) : 611 - 633
  • [32] Interpolatory rank-1 vector subdivision schemes
    Conti, C
    Zimmermann, G
    COMPUTER AIDED GEOMETRIC DESIGN, 2004, 21 (04) : 341 - 351
  • [33] A method for constructing interpolatory subdivision schemes and blending subdivisions
    Li, G.
    Ma, W.
    COMPUTER GRAPHICS FORUM, 2007, 26 (02) : 185 - 201
  • [34] A smoothness criterion for monotonicity-preserving subdivision
    Floater, M.
    Beccari, C.
    Cashman, T.
    Romani, L.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 39 (01) : 193 - 204
  • [35] A smoothness criterion for monotonicity-preserving subdivision
    M. Floater
    C. Beccari
    T. Cashman
    L. Romani
    Advances in Computational Mathematics, 2013, 39 : 193 - 204
  • [36] A point-normal interpolatory subdivision scheme preserving conics
    Bugel, Niels
    Romani, Lucia
    Kosinka, Jiri
    COMPUTER AIDED GEOMETRIC DESIGN, 2024, 111
  • [37] Smoothness equivalence properties of interpolatory Lie group subdivision schemes
    Xie, Gang
    Yu, Thomas P. -Y.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (03) : 731 - 750
  • [38] Non-uniform interpolatory subdivision schemes with improved smoothness
    Dyn, Nira
    Hormann, Kai
    Mancinelli, Claudio
    COMPUTER AIDED GEOMETRIC DESIGN, 2022, 94
  • [39] On extraordinary rules of quad-based interpolatory subdivision schemes
    Novara, Paola
    Romani, Lucia
    COMPUTER AIDED GEOMETRIC DESIGN, 2015, 35-36 : 225 - 242
  • [40] Interpolatory subdivision schemes with infinite masks originated from splines
    Zheludev, Valery A.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 25 (04) : 475 - 506