Monotonicity preserving interpolatory subdivision schemes

被引:20
|
作者
Kuijt, F [1 ]
van Damme, R [1 ]
机构
[1] Univ Twente, Fac Math Sci, NL-7500 AE Enschede, Netherlands
关键词
subdivision; interpolation; monotonicity preservation; shape preservation; computer aided geometric design;
D O I
10.1016/S0377-0427(98)00220-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of local nonlinear stationary subdivision schemes that interpolate equidistant data and that preserve monotonicity in the data is examined. The limit function obtained after repeated application of these schemes exists and is monotone for arbitrary monotone initial data. Next a class of rational subdivision schemes is investigated. These schemes generate limit functions that are continuously differentiable for any strictly monotone data. The approximation order of the schemes is four. Some generalisations, such as preservation of piecewise monotonicity and application to homogeneous grid refinement, are briefly discussed. (C) 1999 Elsevier Science B.V. All rights reserved. AMS classification: 41A05; 41A29; 65D05; 65D17.
引用
收藏
页码:203 / 229
页数:27
相关论文
共 50 条
  • [41] Level-Dependent Interpolatory Hermite Subdivision Schemes and Wavelets
    Mariantonia Cotronei
    Caroline Moosmüller
    Tomas Sauer
    Nada Sissouno
    Constructive Approximation, 2019, 50 : 341 - 366
  • [42] Fractal properties of interpolatory subdivision schemes and their application in fractal generation
    Zheng, Hongchan
    Ye, Zhenglin
    Lei, Youming
    Liu, Xiaodong
    CHAOS SOLITONS & FRACTALS, 2007, 32 (01) : 113 - 123
  • [43] Full rank interpolatory subdivision schemes: Kronecker, filters and multiresolution
    Conti, Costanza
    Cotronei, Mariantonia
    Sauer, Tomas
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (07) : 1649 - 1659
  • [44] Level-Dependent Interpolatory Hermite Subdivision Schemes and Wavelets
    Cotronei, Mariantonia
    Moosmuller, Caroline
    Sauer, Tomas
    Sissouno, Nada
    CONSTRUCTIVE APPROXIMATION, 2019, 50 (02) : 341 - 366
  • [45] Interpolatory subdivision schemes with infinite masks originated from splines
    Valery A. Zheludev
    Advances in Computational Mathematics, 2006, 25 : 475 - 506
  • [46] Analysis of univariate nonstationary subdivision schemes with application to Gaussian-based interpolatory schemes
    Dyn, Nira
    Levin, David
    Yoon, Jungho
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (02) : 470 - 488
  • [47] Shape preserving rational [3/2] Hermite interpolatory subdivision scheme
    Bebarta, Shubhashree
    Jena, Mahendra Kumar
    CALCOLO, 2023, 60 (01)
  • [48] Fourier analysis of 2-point Hermite interpolatory subdivision schemes
    Dubuc, S
    Lemire, D
    Merrien, JL
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2001, 7 (05) : 537 - 552
  • [49] Quaternary interpolatory subdivision schemes to generate Koch-type curves
    Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
    J. Comput. Inf. Syst., 2012, 20 (8521-8528):
  • [50] Shape preserving rational [3/2] Hermite interpolatory subdivision scheme
    Shubhashree Bebarta
    Mahendra Kumar Jena
    Calcolo, 2023, 60