Monotonicity preserving interpolatory subdivision schemes

被引:20
|
作者
Kuijt, F [1 ]
van Damme, R [1 ]
机构
[1] Univ Twente, Fac Math Sci, NL-7500 AE Enschede, Netherlands
关键词
subdivision; interpolation; monotonicity preservation; shape preservation; computer aided geometric design;
D O I
10.1016/S0377-0427(98)00220-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of local nonlinear stationary subdivision schemes that interpolate equidistant data and that preserve monotonicity in the data is examined. The limit function obtained after repeated application of these schemes exists and is monotone for arbitrary monotone initial data. Next a class of rational subdivision schemes is investigated. These schemes generate limit functions that are continuously differentiable for any strictly monotone data. The approximation order of the schemes is four. Some generalisations, such as preservation of piecewise monotonicity and application to homogeneous grid refinement, are briefly discussed. (C) 1999 Elsevier Science B.V. All rights reserved. AMS classification: 41A05; 41A29; 65D05; 65D17.
引用
收藏
页码:203 / 229
页数:27
相关论文
共 50 条
  • [21] Lagrange Interpolatory Subdivision Schemes in Chebyshev Spaces
    Marie-Laurence Mazure
    Foundations of Computational Mathematics, 2015, 15 : 1035 - 1068
  • [22] On Convergent Interpolatory Subdivision Schemes in Riemannian Geometry
    Johannes Wallner
    Constructive Approximation, 2014, 40 : 473 - 486
  • [23] Lagrange Interpolatory Subdivision Schemes in Chebyshev Spaces
    Mazure, Marie-Laurence
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (04) : 1035 - 1068
  • [24] Optimal interpolatory subdivision schemes in multidimensional spaces
    Han, B
    Jia, RQ
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 36 (01) : 105 - 124
  • [25] A study on the mask of interpolatory symmetric subdivision schemes
    Ko, Kwan Pyo
    Lee, Byung-Gook
    Yoon, Gang Joon
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 609 - 621
  • [26] Ternary interpolatory subdivision schemes for the triangular mesh
    Zheng, HC
    Ye, ZL
    CURRENT TRENDS IN HIGH PERFORMANCE COMPUTING AND ITS APPLICATIONS, PROCEEDINGS, 2005, : 197 - 206
  • [27] Interpolatory subdivision schemes with the optimal approximation order
    Zhang, Baoxing
    Zheng, Hongchan
    Song, Weijie
    Lin, Zengyao
    Zhou, Jie
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 347 : 1 - 14
  • [28] Unified Framework of Approximating and Interpolatory Subdivision Schemes for Construction of Class of Binary Subdivision Schemes
    Ashraf, Pakeeza
    Mustafa, Ghulam
    Ghaffar, Abdul
    Zahra, Rida
    Nisar, Kottakkaran Sooppy
    Mahmoud, Emad E.
    Alharbi, Wedad R.
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [29] Interpolatory quad/triangle subdivision schemes for surface design
    Jiang, Qingtang
    Li, Baobin
    Zhu, Weiwei
    COMPUTER AIDED GEOMETRIC DESIGN, 2009, 26 (08) : 904 - 922
  • [30] Shape preserving HC2 interpolatory subdivision
    Lettieri, Davide
    Manni, Carla
    Pelosi, Francesca
    Speleers, Hendrik
    BIT NUMERICAL MATHEMATICS, 2015, 55 (03) : 751 - 779