A smoothness criterion for monotonicity-preserving subdivision

被引:6
|
作者
Floater, M. [1 ]
Beccari, C. [2 ]
Cashman, T. [3 ,4 ]
Romani, L. [5 ]
机构
[1] Univ Oslo, Dept Informat, Ctr Math Applicat, N-0316 Oslo, Norway
[2] Univ Bologna, Dipartimento Matemat, I-40127 Bologna, Italy
[3] Univ Cambridge, Cambridge, England
[4] Univ Lugano, Fac Informat, CH-6904 Lugano, Switzerland
[5] Univ Milano Bicocca, Dept Math & Applicat, I-20125 Milan, Italy
关键词
Interpolatory subdivision; Monotonicity-preservation; INTERPOLATORY SUBDIVISION; NONLINEAR SUBDIVISION; SCHEMES;
D O I
10.1007/s10444-012-9275-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study subdivision schemes that both interpolate and preserve the monotonicity of the input data, and we derive a simple ratio condition that guarantees the continuous differentiability of the limit function. We then show that the condition holds for both a scheme of Kuijt and van Damme, based on rational functions, and a scheme of Sabin and Dodgson, based on square roots.
引用
收藏
页码:193 / 204
页数:12
相关论文
共 50 条
  • [1] A smoothness criterion for monotonicity-preserving subdivision
    M. Floater
    C. Beccari
    T. Cashman
    L. Romani
    [J]. Advances in Computational Mathematics, 2013, 39 : 193 - 204
  • [2] Monotonicity-preserving doubly infinite matrices
    Akgun, F. Aydin
    Rhoades, B. E.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 235 : 105 - 109
  • [3] Monotonicity-preserving linear multistep methods
    Hundsdorfer, W
    Ruuth, SJ
    Spiteri, RJ
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (02) : 605 - 623
  • [4] Simple modifications of monotonicity-preserving limiters
    Rider, WJ
    Margolin, LG
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 174 (01) : 473 - 488
  • [5] Monotonicity-preserving interpolation of nongridded data
    Costantini, P
    Manni, C
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 1996, 13 (05) : 467 - 495
  • [6] MONOTONICITY PRESERVING SUBDIVISION SCHEMES
    YADSHALOM, I
    [J]. JOURNAL OF APPROXIMATION THEORY, 1993, 74 (01) : 41 - 58
  • [7] Monotonicity-preserving bootstrapped Kriging metamodels for expensive simulations
    Kleijnen, J. P. C.
    van Beers, W. C. M.
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2013, 64 (05) : 708 - 717
  • [8] Monotonicity preserving interpolatory subdivision schemes
    Kuijt, F
    van Damme, R
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 101 (1-2) : 203 - 229
  • [9] Monotonicity-preserving interproximation of B-H-curves
    Pechstein, Clemens
    Juettler, Bert
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (01) : 45 - 57
  • [10] An improved accurate monotonicity-preserving scheme for the Euler equations
    He, Zhiwei
    Zhang, Yousheng
    Gao, Fujie
    Li, Xinliang
    Tian, Baolin
    [J]. COMPUTERS & FLUIDS, 2016, 140 : 1 - 10