Monotonicity-preserving doubly infinite matrices

被引:1
|
作者
Akgun, F. Aydin [1 ]
Rhoades, B. E. [2 ]
机构
[1] Yildiz Tekn Univ, Dept Engn Math, TR-34210 Istanbul, Turkey
[2] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
Monotonicity; Doubly infinite matrices; Doubly infinite Hausdorff matrices;
D O I
10.1016/j.amc.2014.02.072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a regular nonnegative doubly infinite matrix preserves all monotonicities of double sequences if and only if it is a conservative double Haudorff matrix with all nonnegative entries. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:105 / 109
页数:5
相关论文
共 50 条
  • [1] A smoothness criterion for monotonicity-preserving subdivision
    Floater, M.
    Beccari, C.
    Cashman, T.
    Romani, L.
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 39 (01) : 193 - 204
  • [2] Monotonicity-preserving linear multistep methods
    Hundsdorfer, W
    Ruuth, SJ
    Spiteri, RJ
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (02) : 605 - 623
  • [3] Simple modifications of monotonicity-preserving limiters
    Rider, WJ
    Margolin, LG
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 174 (01) : 473 - 488
  • [4] Monotonicity-preserving interpolation of nongridded data
    Costantini, P
    Manni, C
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 1996, 13 (05) : 467 - 495
  • [5] A smoothness criterion for monotonicity-preserving subdivision
    M. Floater
    C. Beccari
    T. Cashman
    L. Romani
    [J]. Advances in Computational Mathematics, 2013, 39 : 193 - 204
  • [6] Monotonicity-preserving bootstrapped Kriging metamodels for expensive simulations
    Kleijnen, J. P. C.
    van Beers, W. C. M.
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2013, 64 (05) : 708 - 717
  • [7] Monotonicity-preserving interproximation of B-H-curves
    Pechstein, Clemens
    Juettler, Bert
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (01) : 45 - 57
  • [8] An improved accurate monotonicity-preserving scheme for the Euler equations
    He, Zhiwei
    Zhang, Yousheng
    Gao, Fujie
    Li, Xinliang
    Tian, Baolin
    [J]. COMPUTERS & FLUIDS, 2016, 140 : 1 - 10
  • [9] High resolution monotonicity-preserving schemes for unsteady compressible flows
    Daru, V
    Tenaud, C
    [J]. COMPUTATIONAL FLUID DYNAMICS 2002, 2003, : 241 - 246
  • [10] On nonpolynomial monotonicity-preserving C1 spline interpolation
    Barrera, Domingo
    Eddargani, Salah
    Lamnii, Abdellah
    Oraiche, Mohammed
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS, 2021, 3 (04)