Pattern formation in a flux limited reaction-diffusion equation of porous media type

被引:29
|
作者
Calvo, J. [1 ]
Campos, J. [2 ]
Caselles, V. [3 ]
Sanchez, O. [2 ]
Soler, J. [2 ]
机构
[1] Ctr Recerca Matemat, Barcelona, Spain
[2] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, E-18071 Granada, Spain
[3] Univ Pompeu Fabra, Dept Tecnol, Barcelona, Spain
关键词
TRAVELING-WAVES; PROPAGATION; FRONTS; MODEL; UNIQUENESS; EXISTENCE; SPEED;
D O I
10.1007/s00222-016-0649-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A non-linear PDE featuring flux limitation effects together with those of the porous media equation (non-linear Fokker-Planck) is presented in this paper. We analyze the balance of such diverse effects through the study of the existence and qualitative behavior of some admissible patterns, namely traveling wave solutions, to this singular reaction-diffusion equation. We show the existence and qualitative behavior of different types of traveling waves: classical profiles for wave speeds high enough, and discontinuous waves that are reminiscent of hyperbolic shock waves when the wave speed lowers below a certain threshold. Some of these solutions are of particular relevance as they provide models by which the whole solution (and not just the bulk of it, as it is the case with classical traveling waves) spreads through the medium with finite speed.
引用
收藏
页码:57 / 108
页数:52
相关论文
共 50 条
  • [1] Pattern formation in a flux limited reaction–diffusion equation of porous media type
    J. Calvo
    J. Campos
    V. Caselles
    O. Sánchez
    J. Soler
    [J]. Inventiones mathematicae, 2016, 206 : 57 - 108
  • [2] Reaction-Diffusion Equation on Thin Porous Media
    Anguiano, Maria
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) : 3089 - 3110
  • [3] On the analysis of traveling waves to a nonlinear flux limited reaction-diffusion equation
    Campos, Juan
    Guerrero, Pilar
    Sanchez, Oscar
    Soler, Juan
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (01): : 141 - 155
  • [4] Pattern selection in a reaction-diffusion equation
    Wang Ping
    Hsieh Din-Yu
    Tang Shaoqiang
    [J]. Acta Mechanica Sinica, 2002, 18 (6) : 652 - 660
  • [5] PATTERN SELECTION IN A REACTION-DIFFUSION EQUATION
    王平
    谢定裕
    唐少强
    武际可
    [J]. Acta Mechanica Sinica, 2002, 18 (06) : 652 - 660
  • [6] Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation
    Gourley, SA
    Chaplain, MAJ
    Davidson, FA
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2001, 16 (02): : 173 - 192
  • [7] The local integral equation method for pattern formation simulations in reaction-diffusion systems
    Sladek, V.
    Sladek, J.
    Shirzadi, A.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2015, 50 : 329 - 340
  • [8] Perturbative Traveling-Wave Solution for a Flux-Limited Reaction-Diffusion Morphogenesis Equation
    Waipot Ngamsaad
    Suthep Suantai
    [J]. Journal of the Korean Physical Society, 2020, 76 : 323 - 329
  • [9] FLUX LIMITED GENERALIZED POROUS MEDIA DIFFUSION EQUATIONS
    Caselles, V.
    [J]. PUBLICACIONS MATEMATIQUES, 2013, 57 (01) : 155 - 217
  • [10] Perturbative Traveling-Wave Solution for a Flux-Limited Reaction-Diffusion Morphogenesis Equation
    Ngamsaad, Waipot
    Suantai, Suthep
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2020, 76 (04) : 323 - 329