FLUX LIMITED GENERALIZED POROUS MEDIA DIFFUSION EQUATIONS

被引:14
|
作者
Caselles, V. [1 ]
机构
[1] Univ Pompeu Fabra, Dept Tecnol Informacio & Comunicacio, Barcelona 08018, Spain
关键词
Degenerate parabolic equations; flux limited diffusion; nonlinear semigroup; QUASI-LINEAR EQUATION; RENORMALIZED SOLUTIONS; ENTROPY SOLUTIONS; UNIQUENESS; EXISTENCE; REGULARITY; FUNCTIONALS;
D O I
10.5565/PUBLMAT_57113_07
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a class of generalized porous media type flux limited diffusion equations and we prove the existence and uniqueness of entropy solutions. We compute the Rankine-Hugoniot condition. on the jump set for solutions which are of locally bounded variation in space and time. We give also a geometric characterization of the entropy conditions on the jump set for a restricted class of this type of equations.
引用
收藏
页码:155 / 217
页数:63
相关论文
共 50 条
  • [1] Convergence of flux-limited porous media diffusion equations to their classical counterpart
    Caselles, Vicent
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2015, 14 (02) : 481 - 505
  • [2] Stochastic generalized porous media and fast diffusion equations
    Ren, Jiagang
    Rockner, Michael
    Wang, Feng-Yu
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 238 (01) : 118 - 152
  • [3] Local-in-time regularity results for some flux-limited diffusion equations of porous media type
    Calvo, J.
    Caselles, V.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 93 : 236 - 272
  • [4] Pattern formation in a flux limited reaction–diffusion equation of porous media type
    J. Calvo
    J. Campos
    V. Caselles
    O. Sánchez
    J. Soler
    [J]. Inventiones mathematicae, 2016, 206 : 57 - 108
  • [5] Pattern formation in a flux limited reaction-diffusion equation of porous media type
    Calvo, J.
    Campos, J.
    Caselles, V.
    Sanchez, O.
    Soler, J.
    [J]. INVENTIONES MATHEMATICAE, 2016, 206 (01) : 57 - 108
  • [6] A generalized Einstein relation for flux-limited diffusion
    Zakari, M
    Jou, D
    [J]. PHYSICA A, 1998, 253 (1-4): : 205 - 210
  • [7] Finite Propagation Speed for Limited Flux Diffusion Equations
    Fuensanta Andreu
    Vicent Caselles
    José M. Mazón
    Salvador Moll
    [J]. Archive for Rational Mechanics and Analysis, 2006, 182
  • [8] AN EXISTENCE AND UNIQUENESS RESULT FOR FLUX LIMITED DIFFUSION EQUATIONS
    Caselles, Vicent
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 (04) : 1151 - 1195
  • [9] On the entropy conditions for some flux limited diffusion equations
    Caselles, V.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (08) : 3311 - 3348
  • [10] Finite propagation speed for limited flux diffusion equations
    Andreu, Fuensanta
    Caselles, Vicent
    Mazon, Jose M.
    Moll, Salvador
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 182 (02) : 269 - 297