Pattern formation in a flux limited reaction–diffusion equation of porous media type

被引:0
|
作者
J. Calvo
J. Campos
V. Caselles
O. Sánchez
J. Soler
机构
[1] Centre de Recerca Matemàtica,Departamento de Matemática Aplicada, Facultad de Ciencias
[2] Universidad de Granada,Departamento de Tecnología
[3] Universitat Pompeu-Fabra,undefined
来源
Inventiones mathematicae | 2016年 / 206卷
关键词
Primary 35K57; 35B36; 35K67; 34Cxx; 70Kxx; Secondary 35B60 ; 37Dxx; 76B15; 35Q35; 37D50; 35Q99;
D O I
暂无
中图分类号
学科分类号
摘要
A non-linear PDE featuring flux limitation effects together with those of the porous media equation (non-linear Fokker–Planck) is presented in this paper. We analyze the balance of such diverse effects through the study of the existence and qualitative behavior of some admissible patterns, namely traveling wave solutions, to this singular reaction–diffusion equation. We show the existence and qualitative behavior of different types of traveling waves: classical profiles for wave speeds high enough, and discontinuous waves that are reminiscent of hyperbolic shock waves when the wave speed lowers below a certain threshold. Some of these solutions are of particular relevance as they provide models by which the whole solution (and not just the bulk of it, as it is the case with classical traveling waves) spreads through the medium with finite speed.
引用
收藏
页码:57 / 108
页数:51
相关论文
共 50 条
  • [1] Pattern formation in a flux limited reaction-diffusion equation of porous media type
    Calvo, J.
    Campos, J.
    Caselles, V.
    Sanchez, O.
    Soler, J.
    [J]. INVENTIONES MATHEMATICAE, 2016, 206 (01) : 57 - 108
  • [2] FLUX LIMITED GENERALIZED POROUS MEDIA DIFFUSION EQUATIONS
    Caselles, V.
    [J]. PUBLICACIONS MATEMATIQUES, 2013, 57 (01) : 155 - 217
  • [3] Reaction–Diffusion Equation on Thin Porous Media
    María Anguiano
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3089 - 3110
  • [4] RADIALLY SYMMETRIC SOLUTIONS OF A TEMPERED DIFFUSION EQUATION. A POROUS MEDIA, FLUX-LIMITED CASE
    Andreu, F.
    Caselles, V.
    Mazon, J. M.
    Soler, J.
    Verbeni, M.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (02) : 1019 - 1049
  • [5] Reaction-Diffusion Equation on Thin Porous Media
    Anguiano, Maria
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) : 3089 - 3110
  • [6] Convergence of flux-limited porous media diffusion equations to their classical counterpart
    Caselles, Vicent
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2015, 14 (02) : 481 - 505
  • [7] Local-in-time regularity results for some flux-limited diffusion equations of porous media type
    Calvo, J.
    Caselles, V.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 93 : 236 - 272
  • [8] Flux diffusion and the porous medium equation
    Gilchrist, J
    [J]. PHYSICA C, 1997, 291 (1-2): : 132 - 142
  • [9] On the analysis of traveling waves to a nonlinear flux limited reaction-diffusion equation
    Campos, Juan
    Guerrero, Pilar
    Sanchez, Oscar
    Soler, Juan
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (01): : 141 - 155
  • [10] Upscaling diffusion–reaction in porous media
    M. K. Bourbatache
    O. Millet
    C. Moyne
    [J]. Acta Mechanica, 2020, 231 : 2011 - 2031