Reaction-Diffusion Equation on Thin Porous Media

被引:3
|
作者
Anguiano, Maria [1 ]
机构
[1] Univ Seville, Dept Anal Matemat, Fac Matemat, Seville 41012, Spain
关键词
Homogenization; Energy method; Dynamical boundary-value problems; Porous media; Thin films;
D O I
10.1007/s40840-021-01103-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a reaction-diffusion equation on a 3D thin porous media of thickness e which is perforated by periodically distributed cylinders of size epsilon. On the boundary of the cylinders, we prescribe a dynamical boundary condition of pure-reactive type. As epsilon -> 0, in the 2D limit the resulting reaction-diffusion equation has a source term coming from the dynamical-type boundary conditions imposed on boundaries of the original 3D domain.
引用
收藏
页码:3089 / 3110
页数:22
相关论文
共 50 条
  • [1] Reaction–Diffusion Equation on Thin Porous Media
    María Anguiano
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3089 - 3110
  • [2] REACTION-DIFFUSION EQUATION ON THIN DOMAINS
    HALE, JK
    RAUGEL, G
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1992, 71 (01): : 33 - 95
  • [3] Pattern formation in a flux limited reaction-diffusion equation of porous media type
    Calvo, J.
    Campos, J.
    Caselles, V.
    Sanchez, O.
    Soler, J.
    [J]. INVENTIONES MATHEMATICAE, 2016, 206 (01) : 57 - 108
  • [4] HOMOGENIZATION OF REACTION-DIFFUSION EQUATIONS IN FRACTURED POROUS MEDIA
    Douanla, Hermann
    Woukeng, Jean Louis
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [5] HYBRID SIMULATIONS OF REACTION-DIFFUSION SYSTEMS IN POROUS MEDIA
    Tartakovsky, A. M.
    Tartakovsky, D. M.
    Scheibe, T. D.
    Meakin, P.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (06): : 2799 - 2816
  • [6] An efficient technique for solving the space-time fractional reaction-diffusion equation in porous media
    Pandey, Prashant
    Kumar, Sachin
    Gomez-Aguilar, J. F.
    Baleanu, D.
    [J]. CHINESE JOURNAL OF PHYSICS, 2020, 68 : 483 - 492
  • [7] Fingering instabilities of exothermic reaction-diffusion fronts in porous media
    Kalliadasis, S
    Yang, J
    De Wit, A
    [J]. PHYSICS OF FLUIDS, 2004, 16 (05) : 1395 - 1409
  • [8] Reaction-Diffusion Equation on a Graph and Phase Transition on Bistable Media
    Ueyama, Eizo
    Hosoe, Shigeyuki
    [J]. 2012 PROCEEDINGS OF SICE ANNUAL CONFERENCE (SICE), 2012, : 1798 - 1801
  • [9] Finite Element Method for the Reaction-Diffusion Equation in Heterogeneous Media
    Hernandez Ramirez, Juan David
    [J]. BOLETIN DE MATEMATICAS, 2018, 25 (02): : 123 - 138
  • [10] A REACTION-DIFFUSION EQUATION ON A THIN L-SHAPED DOMAIN
    HALE, JK
    RAUGEL, G
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1995, 125 : 283 - 327