Pattern formation in a flux limited reaction-diffusion equation of porous media type

被引:29
|
作者
Calvo, J. [1 ]
Campos, J. [2 ]
Caselles, V. [3 ]
Sanchez, O. [2 ]
Soler, J. [2 ]
机构
[1] Ctr Recerca Matemat, Barcelona, Spain
[2] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, E-18071 Granada, Spain
[3] Univ Pompeu Fabra, Dept Tecnol, Barcelona, Spain
关键词
TRAVELING-WAVES; PROPAGATION; FRONTS; MODEL; UNIQUENESS; EXISTENCE; SPEED;
D O I
10.1007/s00222-016-0649-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A non-linear PDE featuring flux limitation effects together with those of the porous media equation (non-linear Fokker-Planck) is presented in this paper. We analyze the balance of such diverse effects through the study of the existence and qualitative behavior of some admissible patterns, namely traveling wave solutions, to this singular reaction-diffusion equation. We show the existence and qualitative behavior of different types of traveling waves: classical profiles for wave speeds high enough, and discontinuous waves that are reminiscent of hyperbolic shock waves when the wave speed lowers below a certain threshold. Some of these solutions are of particular relevance as they provide models by which the whole solution (and not just the bulk of it, as it is the case with classical traveling waves) spreads through the medium with finite speed.
引用
收藏
页码:57 / 108
页数:52
相关论文
共 50 条
  • [21] Cross-diffusion and pattern formation in reaction-diffusion systems
    Vanag, Vladimir K.
    Epstein, Irving R.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (06) : 897 - 912
  • [22] Reaction–Diffusion Equation on Thin Porous Media
    María Anguiano
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3089 - 3110
  • [23] An efficient technique for solving the space-time fractional reaction-diffusion equation in porous media
    Pandey, Prashant
    Kumar, Sachin
    Gomez-Aguilar, J. F.
    Baleanu, D.
    [J]. CHINESE JOURNAL OF PHYSICS, 2020, 68 : 483 - 492
  • [24] On the formation of acceleration and reaction-diffusion wavefronts in autocatalytic-type reaction-diffusion systems
    Needham, DJ
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2006, 71 (03) : 446 - 458
  • [25] Reaction-diffusion master equation, diffusion-limited reactions, and singular potentials
    Isaacson, Samuel A.
    Isaacson, David
    [J]. PHYSICAL REVIEW E, 2009, 80 (06)
  • [26] A Reaction-Diffusion Model of Spatial Pattern Formation in Electrodeposition
    Bozzini, Benedetto
    Lacitignola, Deborah
    Sgura, Ivonne
    [J]. ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [27] Pattern formation in reaction-diffusion systems on evolving surfaces
    Kim, Hyundong
    Yun, Ana
    Yoon, Sungha
    Lee, Chaeyoung
    Park, Jintae
    Kim, Junseok
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (09) : 2019 - 2028
  • [28] Pattern formation in reaction-diffusion enzyme transistor circuits
    Hiratsuka, M
    Aoki, T
    Higuchi, T
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1999, E82A (09) : 1809 - 1817
  • [29] Scenarios of domain pattern formation in a reaction-diffusion system
    Muratov, CB
    Osipov, VV
    [J]. PHYSICAL REVIEW E, 1996, 54 (05): : 4860 - 4879
  • [30] Exact Solutions for Pattern Formation in a Reaction-Diffusion System
    Lin, Yezhi
    Liu, Yinping
    Li, Zhibin
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2013, 14 (05) : 307 - 315