EXPONENTIAL MOMENTS OF FIRST PASSAGE TIMES AND RELATED QUANTITIES FOR RANDOM WALKS

被引:4
|
作者
Iksanov, Alexander [1 ]
Meiners, Matthias [2 ]
机构
[1] Natl T Shevchenko Univ Kiev, Fac Cybernet, Kiev, Ukraine
[2] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
关键词
first-passage time; last exit time; number of visits; random walk; renewal theory;
D O I
10.1214/ECP.v15-1569
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a zero-delayed random walk on the real line, let tau(x), N(x) and rho(x) denote the first passage time into the interval (x,infinity), the number of visits to the interval (-infinity,x] and the last exit time from (-infinity,x], respectively. In the present paper, we provide ultimate criteria for the finiteness of exponential moments of these quantities. Moreover, whenever these moments are finite, we derive their asymptotic behaviour, as x -> infinity.
引用
收藏
页码:365 / 375
页数:11
相关论文
共 50 条
  • [31] First passage and first hitting times of Levy flights and Levy walks
    Palyulin, Vladimir V.
    Blackburn, George
    Lomholt, Michael A.
    Watkins, Nicholas W.
    Metzler, Ralf
    Klages, Rainer
    Chechkin, Aleksei V.
    NEW JOURNAL OF PHYSICS, 2019, 21 (10):
  • [32] Moments of an exponential functional of random walks and permutations with given descent sets
    Tamás Szabados
    Balázs Székely
    Periodica Mathematica Hungarica, 2004, 49 (1) : 131 - 139
  • [33] Everlasting impact of initial perturbations on first-passage times of non-Markovian random walks
    Levernier, N.
    Mendes, T., V
    Benichou, O.
    Voituriez, R.
    Guerin, T.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [34] MOMENTS AND LIMIT DISTRIBUTIONS OF SOME FIRST PASSAGE TIMES
    GUT, A
    ANNALS OF PROBABILITY, 1974, 2 (02): : 277 - 308
  • [35] Everlasting impact of initial perturbations on first-passage times of non-Markovian random walks
    N. Levernier
    T. V. Mendes
    O. Bénichou
    R. Voituriez
    T. Guérin
    Nature Communications, 13
  • [36] First-Passage Percolation with Exponential Times on a Ladder
    Renlund, Henrik
    COMBINATORICS PROBABILITY & COMPUTING, 2010, 19 (04): : 593 - 601
  • [37] Moments of Moments and Branching Random Walks
    Bailey, E. C.
    Keating, J. P.
    JOURNAL OF STATISTICAL PHYSICS, 2021, 182 (01)
  • [38] Moments of Moments and Branching Random Walks
    E. C. Bailey
    J. P. Keating
    Journal of Statistical Physics, 2021, 182
  • [39] First passage time distribution in random walks with absorbing boundaries
    Nagar, A
    Pradhan, P
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 320 : 141 - 148
  • [40] Random walks with shrinking steps: First-passage characteristics
    Rador, T
    Taneri, S
    PHYSICAL REVIEW E, 2006, 73 (03):