First passage time distribution in random walks with absorbing boundaries

被引:10
|
作者
Nagar, A [1 ]
Pradhan, P [1 ]
机构
[1] Tata Inst Fundamental Res, Dept Theoret Phys, Bombay 400005, Maharashtra, India
关键词
random walk; first passage time; absorbing boundary;
D O I
10.1016/S0378-4371(02)01651-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We calculate the first passage time distribution in simple, unbiased random walks in presence of absorbing boundaries of various shapes. We obtain explicit solutions for the following geometries of the boundaries-a box in one dimension, circular, square and triangular boundaries in two dimensions and cubical box and spherical shell in three dimensions. The distribution in all cases shows scaling and the scaling function can be expressed in terms of the Jacobi Theta functions. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:141 / 148
页数:8
相关论文
共 50 条
  • [1] First passage time distribution in random walks with absorbing boundaries
    Nagar, Apoorva
    Pradhan, Punyabrata
    [J]. Phys A Stat Mech Appl, (141-148):
  • [2] First passage time distribution and the number of returns for ultrametric random walks
    Avetisov, V. A.
    Bikulov, A. Kh
    Zubarev, A. P.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (08)
  • [3] First Passage Time for Random Walks in Heterogeneous Networks
    Hwang, S.
    Lee, D. -S.
    Kahng, B.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (08)
  • [4] OCCUPANCY TIME FOR CORRELATED RANDOM-WALKS WITH PARTIALLY ABSORBING BOUNDARIES
    UNNIKRISHNAN, K
    PRASAD, MA
    [J]. ACTA PHYSICA AUSTRIACA, 1985, 56 (04): : 253 - 257
  • [5] First passage time problem for biased continuous-time random walks
    Rangarajan, G
    Ding, MZ
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2000, 8 (02) : 139 - 145
  • [6] Continuous time random walks revisited: first passage time and spatial distributions
    Margolin, G
    Berkowitz, B
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 334 (1-2) : 46 - 66
  • [7] Mean first-passage time for random walks on undirected networks
    Zhang, Zhongzhi
    Julaiti, Alafate
    Hou, Baoyu
    Zhang, Hongjuan
    Chen, Guanrong
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2011, 84 (04): : 691 - 697
  • [8] MEAN FIRST PASSAGE TIME OF RANDOM WALKS ON THE GENERALIZED PSEUDOFRACTAL WEB
    Li, Long
    Sun, Weigang
    Chen, Jing
    Wang, Guixiang
    [J]. MODERN PHYSICS LETTERS B, 2013, 27 (10):
  • [9] Mean first-passage time for random walks on undirected networks
    Zhongzhi Zhang
    Alafate Julaiti
    Baoyu Hou
    Hongjuan Zhang
    Guanrong Chen
    [J]. The European Physical Journal B, 2011, 84 : 691 - 697
  • [10] Exact enumeration approach to first-passage time distribution of non-Markov random walks
    Baghram, Shant
    Nikakhtar, Farnik
    Tabar, M. Reza Rahimi
    Rahvar, S.
    Sheth, Ravi K.
    Lehnertz, Klaus
    Sahimi, Muhammad
    [J]. PHYSICAL REVIEW E, 2019, 99 (06)