MEAN FIRST PASSAGE TIME OF RANDOM WALKS ON THE GENERALIZED PSEUDOFRACTAL WEB

被引:7
|
作者
Li, Long [1 ]
Sun, Weigang [2 ]
Chen, Jing [3 ]
Wang, Guixiang [1 ]
机构
[1] Hangzhou Dianzi Univ, Inst Operat Res & Cybernet, Hangzhou 310018, Zhejiang, Peoples R China
[2] Hangzhou Dianzi Univ, Inst Appl Math & Engn Computat, Hangzhou 310018, Zhejiang, Peoples R China
[3] Zhejiang Yuying Coll Vocat Technol, Dept Informat Technol & Applicat, Hangzhou 310018, Zhejiang, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2013年 / 27卷 / 10期
基金
中国国家自然科学基金;
关键词
Pseudofractal web; random walks; mean first passage time; SCALE-FREE NETS; NETWORKS;
D O I
10.1142/S021798491350070X
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we study the scaling for mean first passage time (MFPT) of random walks on the generalized pseudofractal web (GPFW) with a trap, where an initial state is transformed from a triangle to a r-polygon and every existing edge gives birth to finite nodes in the subsequent step. We then obtain an analytical expression and an exact scaling for the MFPT, which shows that the MFPT grows as a power-law function in the large limit of network order. In addition, we determine the exponent of scaling efficiency characterizing the random walks, with the exponent less than 1. The scaling exponent of the MFPT is same for the initial state of the web being a polygon with finite nodes. This method could be applied to other fractal networks.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Mean first-passage time for random walks on generalized deterministic recursive trees
    Comellas, Francesc
    Miralles, Alicia
    [J]. PHYSICAL REVIEW E, 2010, 81 (06)
  • [2] Exact solution for mean first-passage time on a pseudofractal scale-free web
    Zhang, Zhongzhi
    Qi, Yi
    Zhou, Shuigeng
    Xie, Wenlei
    Guan, Jihong
    [J]. PHYSICAL REVIEW E, 2009, 79 (02)
  • [3] Mean first-passage time for random walks on undirected networks
    Zhang, Zhongzhi
    Julaiti, Alafate
    Hou, Baoyu
    Zhang, Hongjuan
    Chen, Guanrong
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2011, 84 (04): : 691 - 697
  • [4] Mean first-passage time for random walks on undirected networks
    Zhongzhi Zhang
    Alafate Julaiti
    Baoyu Hou
    Hongjuan Zhang
    Guanrong Chen
    [J]. The European Physical Journal B, 2011, 84 : 691 - 697
  • [5] Exact scaling for the mean first-passage time of random walks on a generalized Koch network with a trap
    Zhang Jing-Yuan
    Sun Wei-Gang
    Chen Guan-Rong
    [J]. CHINESE PHYSICS B, 2012, 21 (03)
  • [6] Exact scaling for the mean first-passage time of random walks on a generalized Koch network with a trap
    张静远
    孙伟刚
    陈关荣
    [J]. Chinese Physics B, 2012, 21 (03) : 525 - 529
  • [7] Mean first-passage time for random walks on random growth tree networks
    Ma, Fei
    Wang, Ping
    [J]. PHYSICAL REVIEW E, 2022, 105 (01)
  • [8] "Spectrally gapped" random walks on networks: a Mean First Passage Time formula
    Bartolucci, Silvia
    Caccioli, Fabio
    Caravelli, Francesco
    Vivo, Pierpaolo
    [J]. SCIPOST PHYSICS, 2021, 11 (05):
  • [9] Mean first-passage time for random walks on the T-graph
    Zhang, Zhongzhi
    Lin, Yuan
    Zhou, Shuigeng
    Wu, Bin
    Guan, Jihong
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [10] Mean First Passage Time of Preferential Random Walks on Complex Networks with Applications
    Zheng, Zhongtuan
    Xiao, Gaoxi
    Wang, Guoqiang
    Zhang, Guanglin
    Jiang, Kaizhong
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017