First passage time distribution in random walks with absorbing boundaries

被引:10
|
作者
Nagar, A [1 ]
Pradhan, P [1 ]
机构
[1] Tata Inst Fundamental Res, Dept Theoret Phys, Bombay 400005, Maharashtra, India
关键词
random walk; first passage time; absorbing boundary;
D O I
10.1016/S0378-4371(02)01651-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We calculate the first passage time distribution in simple, unbiased random walks in presence of absorbing boundaries of various shapes. We obtain explicit solutions for the following geometries of the boundaries-a box in one dimension, circular, square and triangular boundaries in two dimensions and cubical box and spherical shell in three dimensions. The distribution in all cases shows scaling and the scaling function can be expressed in terms of the Jacobi Theta functions. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:141 / 148
页数:8
相关论文
共 50 条
  • [31] ASYMPTOTICS FOR THE FIRST PASSAGE TIMES OF LEVY PROCESSES AND RANDOM WALKS
    Denisov, Denis
    Shneer, Vsevolod
    [J]. JOURNAL OF APPLIED PROBABILITY, 2013, 50 (01) : 64 - 84
  • [32] Random walks with shrinking steps: First-passage characteristics
    Rador, T
    Taneri, S
    [J]. PHYSICAL REVIEW E, 2006, 73 (03):
  • [33] Random walks on complex networks with first-passage resetting
    Huang, Feng
    Chen, Hanshuang
    [J]. PHYSICAL REVIEW E, 2021, 103 (06)
  • [34] Cutpoint decoupling and first passage times for random walks on graphs
    Kirkland, SJ
    Neumann, M
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 20 (04) : 860 - 870
  • [35] Extreme first-passage times for random walks on networks
    Lawley, Sean D.
    [J]. PHYSICAL REVIEW E, 2020, 102 (06)
  • [36] Grover walks on a line with absorbing boundaries
    Wang, Kun
    Wu, Nan
    Kuklinski, Parker
    Xu, Ping
    Hu, Haixing
    Song, Fangmin
    [J]. QUANTUM INFORMATION PROCESSING, 2016, 15 (09) : 3573 - 3597
  • [37] Grover walks on a line with absorbing boundaries
    Kun Wang
    Nan Wu
    Parker Kuklinski
    Ping Xu
    Haixing Hu
    Fangmin Song
    [J]. Quantum Information Processing, 2016, 15 : 3573 - 3597
  • [38] Passage times of random walks and Levy processes across power law boundaries
    Doney, RA
    Maller, RA
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (01) : 57 - 70
  • [39] Mean first-passage time for maximal-entropy random walks in complex networks
    Lin, Yuan
    Zhang, Zhongzhi
    [J]. SCIENTIFIC REPORTS, 2014, 4
  • [40] Mean first-passage time for maximal-entropy random walks in complex networks
    Yuan Lin
    Zhongzhi Zhang
    [J]. Scientific Reports, 4