EXPONENTIAL MOMENTS OF FIRST PASSAGE TIMES AND RELATED QUANTITIES FOR RANDOM WALKS

被引:4
|
作者
Iksanov, Alexander [1 ]
Meiners, Matthias [2 ]
机构
[1] Natl T Shevchenko Univ Kiev, Fac Cybernet, Kiev, Ukraine
[2] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
关键词
first-passage time; last exit time; number of visits; random walk; renewal theory;
D O I
10.1214/ECP.v15-1569
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a zero-delayed random walk on the real line, let tau(x), N(x) and rho(x) denote the first passage time into the interval (x,infinity), the number of visits to the interval (-infinity,x] and the last exit time from (-infinity,x], respectively. In the present paper, we provide ultimate criteria for the finiteness of exponential moments of these quantities. Moreover, whenever these moments are finite, we derive their asymptotic behaviour, as x -> infinity.
引用
收藏
页码:365 / 375
页数:11
相关论文
共 50 条
  • [41] Random walks on complex networks with first-passage resetting
    Huang, Feng
    Chen, Hanshuang
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [42] Exponential asymptotics for intersection local times of stable processes and random walks
    Chen, X
    Rosen, J
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (05): : 901 - 928
  • [43] Exact expressions of mean first-passage times and splitting probabilities for random walks in bounded rectangular domains
    Condamin, S.
    Benichou, O.
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (20):
  • [44] First-passage times and related moments for continuous-time birth–death chains
    Virginia Giorno
    Amelia G. Nobile
    Ricerche di Matematica, 2019, 68 : 629 - 659
  • [45] Moments of first passage times in general birth–death processes
    Oualid Jouini
    Yves Dallery
    Mathematical Methods of Operations Research, 2008, 68 : 49 - 76
  • [46] LATTICE RANDOM-WALKS FOR SETS OF RANDOM WALKERS - 1ST PASSAGE TIMES
    LINDENBERG, K
    SESHADRI, V
    SHULER, KE
    WEISS, GH
    JOURNAL OF STATISTICAL PHYSICS, 1980, 23 (01) : 11 - 25
  • [47] First passage times on zero and one and natural exponential families
    Kokonendji, CC
    STATISTICS & PROBABILITY LETTERS, 2001, 51 (03) : 293 - 298
  • [48] Passage times of random walks and Levy processes across power law boundaries
    Doney, RA
    Maller, RA
    PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (01) : 57 - 70
  • [49] Asymptotics of first passage times for random walk in an orthant
    McDonald, DR
    ANNALS OF APPLIED PROBABILITY, 1999, 9 (01): : 110 - 145
  • [50] FIRST PASSAGE TIMES OF A GENERALIZED RANDOM-WALK
    KINNEY, JR
    ANNALS OF MATHEMATICAL STATISTICS, 1961, 32 : 235 - &