EXPONENTIAL MOMENTS OF FIRST PASSAGE TIMES AND RELATED QUANTITIES FOR RANDOM WALKS

被引:4
|
作者
Iksanov, Alexander [1 ]
Meiners, Matthias [2 ]
机构
[1] Natl T Shevchenko Univ Kiev, Fac Cybernet, Kiev, Ukraine
[2] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
关键词
first-passage time; last exit time; number of visits; random walk; renewal theory;
D O I
10.1214/ECP.v15-1569
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a zero-delayed random walk on the real line, let tau(x), N(x) and rho(x) denote the first passage time into the interval (x,infinity), the number of visits to the interval (-infinity,x] and the last exit time from (-infinity,x], respectively. In the present paper, we provide ultimate criteria for the finiteness of exponential moments of these quantities. Moreover, whenever these moments are finite, we derive their asymptotic behaviour, as x -> infinity.
引用
收藏
页码:365 / 375
页数:11
相关论文
共 50 条
  • [21] ESTIMATES OF RATES OF CONVERGENCE IN LIMIT THEOREMS FOR FIRST PASSAGE TIMES OF RANDOM-WALKS
    KENNEDY, DP
    ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (06): : 2090 - 2094
  • [22] Self-Interacting Random Walks: Aging, Exploration, and First-Passage Times
    Barbier-Chebbah, A.
    Benichou, O.
    Voituriez, R.
    PHYSICAL REVIEW X, 2022, 12 (01)
  • [23] From first-passage times of random walks in confinement to geometry-controlled kinetics
    Benichou, O.
    Voituriez, R.
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 539 (04): : 225 - 284
  • [24] Asymptotic expansions in multidimensional Markov renewal theory and first passage times for Markov random walks
    Fuh, CD
    Lai, TL
    ADVANCES IN APPLIED PROBABILITY, 2001, 33 (03) : 652 - 673
  • [25] First-passage times for random walks in bounded domains -: art. no. 260601
    Condamin, S
    Bénichou, O
    Moreau, M
    PHYSICAL REVIEW LETTERS, 2005, 95 (26)
  • [26] On the temporal order of first-passage times in one-dimensional lattice random walks
    Sanders, JB
    Temme, NM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 182 (01) : 134 - 149
  • [27] First-passage times in multiscale random walks: The impact of movement scales on search efficiency
    Campos, Daniel
    Bartumeus, Frederic
    Raposo, E. P.
    Mendez, Vicenc
    PHYSICAL REVIEW E, 2015, 92 (05):
  • [28] First-passage exponents of multiple random walks
    Ben-Naim, E.
    Krapivsky, P. L.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (49)
  • [29] First-passage properties of bursty random walks
    Volovik, D.
    Redner, S.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [30] First Passage Time for Random Walks in Heterogeneous Networks
    Hwang, S.
    Lee, D. -S.
    Kahng, B.
    PHYSICAL REVIEW LETTERS, 2012, 109 (08)